基于XGBoost算法的智能电网信息攻击识别模型

TM744; 智能电网在遭受信息攻击后,如何根据量测数据的变化规律,准确识别电力系统遭受的攻击类型是提高电网安全防御的有效手段,提出一种基于Extreme Gradient Boosting(XGBoost)算法的智能电网信息攻击识别模型.基于kmeans-smote设计电力数据过采样方法,对量测数据进行平衡处理,解决攻击事件样本的不平衡问题.提出最大相关-最小冗余(MRMR)特征选择方法,提取信息攻击事件最优表征特征子集,降低数据维度并提升信息攻击的识别效率.设计XGBoost分类器,对3种攻击状态和正常状态进行分类识别,采用准确率、召回率等指标评估模型的识别性能.经仿真实验验证,所提出的信...

Full description

Saved in:
Bibliographic Details
Published in电测与仪表 Vol. 60; no. 1; pp. 64 - 86
Main Authors 邬蓉蓉, 黎新, 宾冬梅
Format Journal Article
LanguageChinese
Published 广西电网有限责任公司电力科学研究院,南宁530023 15.01.2023
Subjects
Online AccessGet full text
ISSN1001-1390
DOI10.19753/j.issn1001-1390.2023.01.010

Cover

Abstract TM744; 智能电网在遭受信息攻击后,如何根据量测数据的变化规律,准确识别电力系统遭受的攻击类型是提高电网安全防御的有效手段,提出一种基于Extreme Gradient Boosting(XGBoost)算法的智能电网信息攻击识别模型.基于kmeans-smote设计电力数据过采样方法,对量测数据进行平衡处理,解决攻击事件样本的不平衡问题.提出最大相关-最小冗余(MRMR)特征选择方法,提取信息攻击事件最优表征特征子集,降低数据维度并提升信息攻击的识别效率.设计XGBoost分类器,对3种攻击状态和正常状态进行分类识别,采用准确率、召回率等指标评估模型的识别性能.经仿真实验验证,所提出的信息攻击识别模型显著提升了智能电网信息攻击的识别精度,且具有较好的泛化性.
AbstractList TM744; 智能电网在遭受信息攻击后,如何根据量测数据的变化规律,准确识别电力系统遭受的攻击类型是提高电网安全防御的有效手段,提出一种基于Extreme Gradient Boosting(XGBoost)算法的智能电网信息攻击识别模型.基于kmeans-smote设计电力数据过采样方法,对量测数据进行平衡处理,解决攻击事件样本的不平衡问题.提出最大相关-最小冗余(MRMR)特征选择方法,提取信息攻击事件最优表征特征子集,降低数据维度并提升信息攻击的识别效率.设计XGBoost分类器,对3种攻击状态和正常状态进行分类识别,采用准确率、召回率等指标评估模型的识别性能.经仿真实验验证,所提出的信息攻击识别模型显著提升了智能电网信息攻击的识别精度,且具有较好的泛化性.
Author 黎新
宾冬梅
邬蓉蓉
AuthorAffiliation 广西电网有限责任公司电力科学研究院,南宁530023
AuthorAffiliation_xml – name: 广西电网有限责任公司电力科学研究院,南宁530023
Author_FL Li Xin
Bin Dongmei
Wu Rongrong
Author_FL_xml – sequence: 1
  fullname: Wu Rongrong
– sequence: 2
  fullname: Li Xin
– sequence: 3
  fullname: Bin Dongmei
Author_xml – sequence: 1
  fullname: 邬蓉蓉
– sequence: 2
  fullname: 黎新
– sequence: 3
  fullname: 宾冬梅
BookMark eNrjYmDJy89LZWBQMTTQM7Q0NzXWz9LLLC7OMzQwMNQ1NLY00DMyMDLWMzAEIgMWBk64OAcDb3FxZpKBqaGxuYmZgREng9XT-bue7OqLcHfKzy8ueb5u-rPNU5_Pank2c9eL5r3Pp2x9vnfik_0LnzWufzZl99P23S_Wtz3tWP1sxcKn87p5GFjTEnOKU3mhNDdDqJtriLOHro-_u6ezo49usSHQet1kk0STFMukZPM0SxPTNGODVEtT8yTjJJOUxESTJGMzIyPjVAuTlOS0RAsTI0Mz40QzY7MUU6CC1KTENIOkxFRjbgY1iLnliXlpiXnp8Vn5pUV5QBvjU5IrK5NAXjUA2WQMAMUWYFc
ClassificationCodes TM744
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19753/j.issn1001-1390.2023.01.010
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Network attack identification model of smart grid based on XGBoost algorithm
EndPage 86
ExternalDocumentID dcyyb202301010
GrantInformation_xml – fundername: (广西壮族自治区重点研发计划); (广西电网科技项目)
  funderid: (广西壮族自治区重点研发计划); (广西电网科技项目)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1010-c4a4d9bc7f945f30e957b3b4daa4b36223e84dcfa842163a636d5b3bebaf0bae3
ISSN 1001-1390
IngestDate Thu May 29 03:55:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 特征选择
信息攻击识别
XGBoost算法
过采样
智能电网
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1010-c4a4d9bc7f945f30e957b3b4daa4b36223e84dcfa842163a636d5b3bebaf0bae3
PageCount 23
ParticipantIDs wanfang_journals_dcyyb202301010
PublicationCentury 2000
PublicationDate 2023-01-15
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-15
  day: 15
PublicationDecade 2020
PublicationTitle 电测与仪表
PublicationTitle_FL Electrical Measurement & Instrumentation
PublicationYear 2023
Publisher 广西电网有限责任公司电力科学研究院,南宁530023
Publisher_xml – name: 广西电网有限责任公司电力科学研究院,南宁530023
SSID ssib051374602
ssj0039791
ssib001129792
Score 2.3503923
Snippet TM744; 智能电网在遭受信息攻击后,如何根据量测数据的变化规律,准确识别电力系统遭受的攻击类型是提高电网安全防御的有效手段,提出一种基于Extreme Gradient...
SourceID wanfang
SourceType Aggregation Database
StartPage 64
Title 基于XGBoost算法的智能电网信息攻击识别模型
URI https://d.wanfangdata.com.cn/periodical/dcyyb202301010
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1001-1390
  databaseCode: DOA
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0039791
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsEkiiB7EJ77NIX2cODvT09PtbXp31iDoKYHcwnTPjp42kAeY3ERRQRCEiOhByU0QzEG8JAR_Jrubz7CqZnZ3gsHXpamtrq6qrtqequnpB2Mz1oUyLoT1MhEJDyJe4alGZr3YWeeU7_zA4YT-_QdybkHcW4wWJyYf11Ytra_ZWbd57L6S__Eq4MCvuEv2Hzw7YgoIgMG_UIKHofwrH_M04rrNTcJTgaVKF--aZdzGkcY8SbmOeSq5CbmOEKOBQiBGa2qjuAq5aVEVtCca-KkbxK7NkwYSqwZP2tQKkAZFqpgAhXglCQOwQZpEUStQK-XK1DPfmhSJpTIkBXRICTA8IZWgeTJaXstTzVXAkybW6JArPQLqJNAYuYCKwNof10RoBJOShpK4QBnw8vae4VxHgCu9vHK3J_07kdxoNACqExHwq4VAWJP00WhO7SOxETwJq95UpopILABt7OuYD2ASrg05KiaGQNniiSSMj2QIgBqyEgGKByWrFjmWOqcglGBCVIstuHoNEm6_HnzKyxSODLIykpRnuw9zEnlstMNN0RTukP-I_Sxajs6irRYMHz1PPHcbGxZJ8HRBf5KdCGIpg9pkBCXSkAbG4-_tUSOMhfRHB7Phx2CayhjKPMlmhgrd_o06tDOuW2Tdh7Ukbv4sO1O9fU0n5VA6xyY2H51np2tncl5gd3qfdg92X1cDafD1Xf_b28GHZ_33u4dP9wdb3wf7bw5-bPef7PS39nov9g53nvdeful_3u59fHWRLbTT-eacV10w4q1i3z0nMpFr6-JCi6gI_Y6OYhtakWeZsJDZBWFHidwVmRIBvLdkMpR5BAQdmxW-zTrhJTbVXe52LrNpCGxK-s75EP8EmEoBnWioXEUu8nMVXmG3qp4vVQ-Q1aWjnrj6R4pr7NR4UFxnU2sr650bkBKv2ZvkvZ98JoXR
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EXGBoost%E7%AE%97%E6%B3%95%E7%9A%84%E6%99%BA%E8%83%BD%E7%94%B5%E7%BD%91%E4%BF%A1%E6%81%AF%E6%94%BB%E5%87%BB%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E9%82%AC%E8%93%89%E8%93%89&rft.au=%E9%BB%8E%E6%96%B0&rft.au=%E5%AE%BE%E5%86%AC%E6%A2%85&rft.date=2023-01-15&rft.pub=%E5%B9%BF%E8%A5%BF%E7%94%B5%E7%BD%91%E6%9C%89%E9%99%90%E8%B4%A3%E4%BB%BB%E5%85%AC%E5%8F%B8%E7%94%B5%E5%8A%9B%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E5%8D%97%E5%AE%81530023&rft.issn=1001-1390&rft.volume=60&rft.issue=1&rft.spage=64&rft.epage=86&rft_id=info:doi/10.19753%2Fj.issn1001-1390.2023.01.010&rft.externalDocID=dcyyb202301010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg