基于XGBoost算法的智能电网信息攻击识别模型
TM744; 智能电网在遭受信息攻击后,如何根据量测数据的变化规律,准确识别电力系统遭受的攻击类型是提高电网安全防御的有效手段,提出一种基于Extreme Gradient Boosting(XGBoost)算法的智能电网信息攻击识别模型.基于kmeans-smote设计电力数据过采样方法,对量测数据进行平衡处理,解决攻击事件样本的不平衡问题.提出最大相关-最小冗余(MRMR)特征选择方法,提取信息攻击事件最优表征特征子集,降低数据维度并提升信息攻击的识别效率.设计XGBoost分类器,对3种攻击状态和正常状态进行分类识别,采用准确率、召回率等指标评估模型的识别性能.经仿真实验验证,所提出的信...
Saved in:
Published in | 电测与仪表 Vol. 60; no. 1; pp. 64 - 86 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
广西电网有限责任公司电力科学研究院,南宁530023
15.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-1390 |
DOI | 10.19753/j.issn1001-1390.2023.01.010 |
Cover
Summary: | TM744; 智能电网在遭受信息攻击后,如何根据量测数据的变化规律,准确识别电力系统遭受的攻击类型是提高电网安全防御的有效手段,提出一种基于Extreme Gradient Boosting(XGBoost)算法的智能电网信息攻击识别模型.基于kmeans-smote设计电力数据过采样方法,对量测数据进行平衡处理,解决攻击事件样本的不平衡问题.提出最大相关-最小冗余(MRMR)特征选择方法,提取信息攻击事件最优表征特征子集,降低数据维度并提升信息攻击的识别效率.设计XGBoost分类器,对3种攻击状态和正常状态进行分类识别,采用准确率、召回率等指标评估模型的识别性能.经仿真实验验证,所提出的信息攻击识别模型显著提升了智能电网信息攻击的识别精度,且具有较好的泛化性. |
---|---|
ISSN: | 1001-1390 |
DOI: | 10.19753/j.issn1001-1390.2023.01.010 |