基于联合集合卡尔曼滤波的锂电池SOC估计

TM912; 锂电池的SOC(荷电状态)准确估计是电池管理系统及其控制的基础.现有扩展卡尔曼滤波、无迹卡尔曼滤波等方法需计算高维雅克比矩阵或协方差矩阵,对计算能力要求较高.结合数据同化和集合预报的思想,提出基于联合EnKF(集合卡尔曼滤波)的锂电池SOC估计方法.该方法利用集合的统计特征来表征状态变量,避免了高维矩阵的运算,对SOC和模型参数进行联合估计,可提高算法速度和精度.建立了锂电池等效电路模型并辨识了模型初始参数,得到了开路电压曲线.在EnKF的基础上,针对充放电过程中模型参数的变化,提出了基于联合EnKF的SOC估计方法,可在计算过程中联合估计SOC和模型参数.实验结果表明,所提方法...

Full description

Saved in:
Bibliographic Details
Published in浙江电力 Vol. 40; no. 1; pp. 123 - 130
Main Authors 陈刚, 储建新, 潘炫霖, 雷健新, 郑迪
Format Journal Article
LanguageChinese
Published 国网浙江海盐县供电有限公司,浙江 嘉兴 314300%中国计量大学,杭州 310018 2021
Subjects
Online AccessGet full text
ISSN1007-1881
DOI10.19585/j.zjdl.202101018

Cover

More Information
Summary:TM912; 锂电池的SOC(荷电状态)准确估计是电池管理系统及其控制的基础.现有扩展卡尔曼滤波、无迹卡尔曼滤波等方法需计算高维雅克比矩阵或协方差矩阵,对计算能力要求较高.结合数据同化和集合预报的思想,提出基于联合EnKF(集合卡尔曼滤波)的锂电池SOC估计方法.该方法利用集合的统计特征来表征状态变量,避免了高维矩阵的运算,对SOC和模型参数进行联合估计,可提高算法速度和精度.建立了锂电池等效电路模型并辨识了模型初始参数,得到了开路电压曲线.在EnKF的基础上,针对充放电过程中模型参数的变化,提出了基于联合EnKF的SOC估计方法,可在计算过程中联合估计SOC和模型参数.实验结果表明,所提方法可准确高效地估计锂电池的SOC.
ISSN:1007-1881
DOI:10.19585/j.zjdl.202101018