Dynamic Stream Clustering Using Ants
Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the st...
Saved in:
Published in | Advances in Computational Intelligence Systems Vol. 513; pp. 495 - 508 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2016
Springer International Publishing |
Series | Advances in Intelligent Systems and Computing |
Subjects | |
Online Access | Get full text |
ISBN | 3319465619 9783319465616 |
ISSN | 2194-5357 2194-5365 |
DOI | 10.1007/978-3-319-46562-3_32 |
Cover
Abstract | Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the statistical properties of the data can change over time. This paper presents a bio-inspired approach to clustering non-stationary data streams. The proposed algorithm, Ant-Colony Stream Clustering (ACSC), is based on the concept of artificial ants which identify clusters as nests of micro-clusters in dense areas of the data. Micro-clusters are N-dimensional spheres with a maximum radius ε $$\varepsilon $$ . In ACSC the ε $$\varepsilon $$ -neighbourhood, crucial in density clustering, is adaptive and doesn’t require expert, data-dependent tuning. The algorithm uses the sliding window model and summary statistics for each window are stored offline. Experimental results over real and synthetic datasets show that the clustering quality of ACSC is comparable or favourable to leading stream-clustering algorithms while requiring fewer parameters and considerably less computation. |
---|---|
AbstractList | Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the statistical properties of the data can change over time. This paper presents a bio-inspired approach to clustering non-stationary data streams. The proposed algorithm, Ant-Colony Stream Clustering (ACSC), is based on the concept of artificial ants which identify clusters as nests of micro-clusters in dense areas of the data. Micro-clusters are N-dimensional spheres with a maximum radius ε $$\varepsilon $$ . In ACSC the ε $$\varepsilon $$ -neighbourhood, crucial in density clustering, is adaptive and doesn’t require expert, data-dependent tuning. The algorithm uses the sliding window model and summary statistics for each window are stored offline. Experimental results over real and synthetic datasets show that the clustering quality of ACSC is comparable or favourable to leading stream-clustering algorithms while requiring fewer parameters and considerably less computation. |
Author | Fahy, Conor Yang, Shengxiang |
Author_xml | – sequence: 1 givenname: Conor surname: Fahy fullname: Fahy, Conor email: conor.fahy@dmu.ac.uk organization: School of Computer Science and Informatics, Centre for Computational Intelligence (CCI), De Montfort University, Leicester, UK – sequence: 2 givenname: Shengxiang surname: Yang fullname: Yang, Shengxiang email: syang@dmu.ac.uk organization: School of Computer Science and Informatics, Centre for Computational Intelligence (CCI), De Montfort University, Leicester, UK |
BookMark | eNo9kE9PwzAMxQMMxDb2DTjswDWQ2EncHKfxV5rEAXaO0jaDwdaWpjvw7Uk34GJbz_pZ73nEBlVdBcYupbiWQtCNpYwjR2m5MtoAR4dwxCZJxiTuNTxmQ0gz12j0CRv9LaQd_C80nbGh1ZnSJDM6Z5MYP4QQkpC0MEN2dftd-e26mL50bfDb6Xyzi11o19XbdBn7Oqu6eMFOV34Tw-S3j9ny_u51_sgXzw9P89mCN5DZjpugCMCXpdGgEKQOHr2UMmijyiJXZkWQee2Tc6JckLHBQIFC5WCoXFkcMzjcjU3vILQur-vP6KRw_U9cCu_SH6R1-_z9DAlSB6hp669diJ0LPVWEqmv9pnj3TcoTE0FKKeFUT2cCfwArqF81 |
ContentType | Book Chapter |
Copyright | Springer International Publishing AG 2017 |
Copyright_xml | – notice: Springer International Publishing AG 2017 |
DBID | FFUUA |
DOI | 10.1007/978-3-319-46562-3_32 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Engineering |
EISBN | 9783319465623 3319465627 |
EISSN | 2194-5365 |
Editor | Angelov, Plamen Shen, Qiang Gegov, Alexander Jayne, Chrisina |
Editor_xml | – sequence: 1 fullname: Angelov, Plamen – sequence: 2 fullname: Shen, Qiang – sequence: 3 fullname: Gegov, Alexander – sequence: 4 fullname: Jayne, Chrisina |
EndPage | 508 |
ExternalDocumentID | EBC4674440_419_480 |
GroupedDBID | 0D9 0DA 20A 38. AABBV AALVI AAZIN ABMNI ABQUB ACBPT ACLYY ADCXD AEJLV AEKFX AEZAY AGIGN AGYGE AIODD ALBAV ALMA_UNASSIGNED_HOLDINGS AZZ BBABE CEWPM CZZ DBMNP FFUUA I4C IEZ MYL SBO SWYDZ TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 ACGFS RSU |
ID | FETCH-LOGICAL-p289t-6e4722add65243215ea3a111e564dcb46f728a5a62377b0769e62c304b267df93 |
ISBN | 3319465619 9783319465616 |
ISSN | 2194-5357 |
IngestDate | Tue Jul 29 19:57:25 EDT 2025 Thu May 29 01:02:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
LCCallNum | Q342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p289t-6e4722add65243215ea3a111e564dcb46f728a5a62377b0769e62c304b267df93 |
Notes | Original Abstract: Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the statistical properties of the data can change over time. This paper presents a bio-inspired approach to clustering non-stationary data streams. The proposed algorithm, Ant-Colony Stream Clustering (ACSC), is based on the concept of artificial ants which identify clusters as nests of micro-clusters in dense areas of the data. Micro-clusters are N-dimensional spheres with a maximum radius ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. In ACSC the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-neighbourhood, crucial in density clustering, is adaptive and doesn’t require expert, data-dependent tuning. The algorithm uses the sliding window model and summary statistics for each window are stored offline. Experimental results over real and synthetic datasets show that the clustering quality of ACSC is comparable or favourable to leading stream-clustering algorithms while requiring fewer parameters and considerably less computation. |
OCLC | 958457187 |
OpenAccessLink | http://hdl.handle.net/2086/12626 |
PQID | EBC4674440_419_480 |
PageCount | 14 |
ParticipantIDs | springer_books_10_1007_978_3_319_46562_3_32 proquest_ebookcentralchapters_4674440_419_480 |
PublicationCentury | 2000 |
PublicationDate | 2016 2017 |
PublicationDateYYYYMMDD | 2016-01-01 2017-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Advances in Intelligent Systems and Computing |
PublicationSeriesTitleAlternate | Advs in Intelligent Syst., Computing |
PublicationSubtitle | Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7-9, 2016, Lancaster, UK |
PublicationTitle | Advances in Computational Intelligence Systems |
PublicationYear | 2016 2017 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kacprzyk, Janusz |
RelatedPersons_xml | – sequence: 1 givenname: Janusz surname: Kacprzyk fullname: Kacprzyk, Janusz organization: Systems Res Inst, Polish Academy of Sciences, Warsaw, Poland |
SSID | ssj0001737506 ssj0002381522 |
Score | 1.8735124 |
Snippet | Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 495 |
SubjectTerms | Artificial intelligence Automatic control engineering Concept Drift Data Stream Dense Area Image processing Pheromone Trail Rand Index |
Title | Dynamic Stream Clustering Using Ants |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4674440&ppg=480 http://link.springer.com/10.1007/978-3-319-46562-3_32 |
Volume | 513 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLIiBtygvZehWBSWxYydjKYVSAVOLukVO4kxQEE0Xfj13cUwedClLFEVu5Nzn2nef_d0R0vMdmbqOdO0YlhObIWUFo8SzYz_J4jALskAi3_H8wsczNpn786pOaKEuyeOb5HutruQ_qMIzwBVVshsg-_tSeAD3gC9cAWG4tpzfJs2qjxfr3ful1u1hbQbD6z020mzWUpKXQ-NOV6EvdqTle3_4tsJsCcgZ6AMEgzK9k2ED3DYbYNjAFp9Yo7QGD40IksJfEFOmacGjmRJ9rQ_9M73WT1Sg-gl_6dk0KinKRjZrpis0tbJZj26HWN-EMSdibhhBo22yLQLWITuD0eTpteLHBAVnhqMcx3Qx1AmTqi7XpJDr-tQIGlr73IX7MD0geygpsVDrAb08JFtqcUT2TUENq5xfj0mvRMbSyFgVMlaBjIXInJDZ_Wg6HNtlGQv7E6LZ3OYKE3LCOsJ9j1FwsZSkEpYY5XOWJjHjmfAC6UtwRIWIHcFDxb2EOiz2uEizkJ6SzuJjoc6IxSC-TKXDEgVee6IgVqYZOMypkKmgLEu7xDZfHBWb7eUJ30R_3zJq2b5L-sYsETZfRiaLNdgzAhtiM7Qn3nvnG779guxWQ_SSdPKvlboCFy6Pr0u0fwD4yUA4 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Computational+Intelligence+Systems&rft.atitle=Dynamic+Stream+Clustering+Using+Ants&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319465616&rft.volume=513&rft_id=info:doi/10.1007%2F978-3-319-46562-3_32&rft.externalDBID=480&rft.externalDocID=EBC4674440_419_480 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4674440-l.jpg |