Dynamic Stream Clustering Using Ants

Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the st...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Computational Intelligence Systems Vol. 513; pp. 495 - 508
Main Authors Fahy, Conor, Yang, Shengxiang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesAdvances in Intelligent Systems and Computing
Subjects
Online AccessGet full text
ISBN3319465619
9783319465616
ISSN2194-5357
2194-5365
DOI10.1007/978-3-319-46562-3_32

Cover

Abstract Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the statistical properties of the data can change over time. This paper presents a bio-inspired approach to clustering non-stationary data streams. The proposed algorithm, Ant-Colony Stream Clustering (ACSC), is based on the concept of artificial ants which identify clusters as nests of micro-clusters in dense areas of the data. Micro-clusters are N-dimensional spheres with a maximum radius ε $$\varepsilon $$ . In ACSC the ε $$\varepsilon $$ -neighbourhood, crucial in density clustering, is adaptive and doesn’t require expert, data-dependent tuning. The algorithm uses the sliding window model and summary statistics for each window are stored offline. Experimental results over real and synthetic datasets show that the clustering quality of ACSC is comparable or favourable to leading stream-clustering algorithms while requiring fewer parameters and considerably less computation.
AbstractList Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the statistical properties of the data can change over time. This paper presents a bio-inspired approach to clustering non-stationary data streams. The proposed algorithm, Ant-Colony Stream Clustering (ACSC), is based on the concept of artificial ants which identify clusters as nests of micro-clusters in dense areas of the data. Micro-clusters are N-dimensional spheres with a maximum radius ε $$\varepsilon $$ . In ACSC the ε $$\varepsilon $$ -neighbourhood, crucial in density clustering, is adaptive and doesn’t require expert, data-dependent tuning. The algorithm uses the sliding window model and summary statistics for each window are stored offline. Experimental results over real and synthetic datasets show that the clustering quality of ACSC is comparable or favourable to leading stream-clustering algorithms while requiring fewer parameters and considerably less computation.
Author Fahy, Conor
Yang, Shengxiang
Author_xml – sequence: 1
  givenname: Conor
  surname: Fahy
  fullname: Fahy, Conor
  email: conor.fahy@dmu.ac.uk
  organization: School of Computer Science and Informatics, Centre for Computational Intelligence (CCI), De Montfort University, Leicester, UK
– sequence: 2
  givenname: Shengxiang
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: School of Computer Science and Informatics, Centre for Computational Intelligence (CCI), De Montfort University, Leicester, UK
BookMark eNo9kE9PwzAMxQMMxDb2DTjswDWQ2EncHKfxV5rEAXaO0jaDwdaWpjvw7Uk34GJbz_pZ73nEBlVdBcYupbiWQtCNpYwjR2m5MtoAR4dwxCZJxiTuNTxmQ0gz12j0CRv9LaQd_C80nbGh1ZnSJDM6Z5MYP4QQkpC0MEN2dftd-e26mL50bfDb6Xyzi11o19XbdBn7Oqu6eMFOV34Tw-S3j9ny_u51_sgXzw9P89mCN5DZjpugCMCXpdGgEKQOHr2UMmijyiJXZkWQee2Tc6JckLHBQIFC5WCoXFkcMzjcjU3vILQur-vP6KRw_U9cCu_SH6R1-_z9DAlSB6hp669diJ0LPVWEqmv9pnj3TcoTE0FKKeFUT2cCfwArqF81
ContentType Book Chapter
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID FFUUA
DOI 10.1007/978-3-319-46562-3_32
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISBN 9783319465623
3319465627
EISSN 2194-5365
Editor Angelov, Plamen
Shen, Qiang
Gegov, Alexander
Jayne, Chrisina
Editor_xml – sequence: 1
  fullname: Angelov, Plamen
– sequence: 2
  fullname: Shen, Qiang
– sequence: 3
  fullname: Gegov, Alexander
– sequence: 4
  fullname: Jayne, Chrisina
EndPage 508
ExternalDocumentID EBC4674440_419_480
GroupedDBID 0D9
0DA
20A
38.
AABBV
AALVI
AAZIN
ABMNI
ABQUB
ACBPT
ACLYY
ADCXD
AEJLV
AEKFX
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CEWPM
CZZ
DBMNP
FFUUA
I4C
IEZ
MYL
SBO
SWYDZ
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ACGFS
RSU
ID FETCH-LOGICAL-p289t-6e4722add65243215ea3a111e564dcb46f728a5a62377b0769e62c304b267df93
ISBN 3319465619
9783319465616
ISSN 2194-5357
IngestDate Tue Jul 29 19:57:25 EDT 2025
Thu May 29 01:02:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
LCCallNum Q342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p289t-6e4722add65243215ea3a111e564dcb46f728a5a62377b0769e62c304b267df93
Notes Original Abstract: Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the statistical properties of the data can change over time. This paper presents a bio-inspired approach to clustering non-stationary data streams. The proposed algorithm, Ant-Colony Stream Clustering (ACSC), is based on the concept of artificial ants which identify clusters as nests of micro-clusters in dense areas of the data. Micro-clusters are N-dimensional spheres with a maximum radius ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. In ACSC the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-neighbourhood, crucial in density clustering, is adaptive and doesn’t require expert, data-dependent tuning. The algorithm uses the sliding window model and summary statistics for each window are stored offline. Experimental results over real and synthetic datasets show that the clustering quality of ACSC is comparable or favourable to leading stream-clustering algorithms while requiring fewer parameters and considerably less computation.
OCLC 958457187
OpenAccessLink http://hdl.handle.net/2086/12626
PQID EBC4674440_419_480
PageCount 14
ParticipantIDs springer_books_10_1007_978_3_319_46562_3_32
proquest_ebookcentralchapters_4674440_419_480
PublicationCentury 2000
PublicationDate 2016
2017
PublicationDateYYYYMMDD 2016-01-01
2017-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Advances in Intelligent Systems and Computing
PublicationSeriesTitleAlternate Advs in Intelligent Syst., Computing
PublicationSubtitle Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7-9, 2016, Lancaster, UK
PublicationTitle Advances in Computational Intelligence Systems
PublicationYear 2016
2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kacprzyk, Janusz
RelatedPersons_xml – sequence: 1
  givenname: Janusz
  surname: Kacprzyk
  fullname: Kacprzyk, Janusz
  organization: Systems Res Inst, Polish Academy of Sciences, Warsaw, Poland
SSID ssj0001737506
ssj0002381522
Score 1.8735124
Snippet Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is...
SourceID springer
proquest
SourceType Publisher
StartPage 495
SubjectTerms Artificial intelligence
Automatic control engineering
Concept Drift
Data Stream
Dense Area
Image processing
Pheromone Trail
Rand Index
Title Dynamic Stream Clustering Using Ants
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4674440&ppg=480
http://link.springer.com/10.1007/978-3-319-46562-3_32
Volume 513
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLIiBtygvZehWBSWxYydjKYVSAVOLukVO4kxQEE0Xfj13cUwedClLFEVu5Nzn2nef_d0R0vMdmbqOdO0YlhObIWUFo8SzYz_J4jALskAi3_H8wsczNpn786pOaKEuyeOb5HutruQ_qMIzwBVVshsg-_tSeAD3gC9cAWG4tpzfJs2qjxfr3ful1u1hbQbD6z020mzWUpKXQ-NOV6EvdqTle3_4tsJsCcgZ6AMEgzK9k2ED3DYbYNjAFp9Yo7QGD40IksJfEFOmacGjmRJ9rQ_9M73WT1Sg-gl_6dk0KinKRjZrpis0tbJZj26HWN-EMSdibhhBo22yLQLWITuD0eTpteLHBAVnhqMcx3Qx1AmTqi7XpJDr-tQIGlr73IX7MD0geygpsVDrAb08JFtqcUT2TUENq5xfj0mvRMbSyFgVMlaBjIXInJDZ_Wg6HNtlGQv7E6LZ3OYKE3LCOsJ9j1FwsZSkEpYY5XOWJjHjmfAC6UtwRIWIHcFDxb2EOiz2uEizkJ6SzuJjoc6IxSC-TKXDEgVee6IgVqYZOMypkKmgLEu7xDZfHBWb7eUJ30R_3zJq2b5L-sYsETZfRiaLNdgzAhtiM7Qn3nvnG779guxWQ_SSdPKvlboCFy6Pr0u0fwD4yUA4
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Computational+Intelligence+Systems&rft.atitle=Dynamic+Stream+Clustering+Using+Ants&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319465616&rft.volume=513&rft_id=info:doi/10.1007%2F978-3-319-46562-3_32&rft.externalDBID=480&rft.externalDocID=EBC4674440_419_480
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4674440-l.jpg