Dynamic Stream Clustering Using Ants

Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the st...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Computational Intelligence Systems Vol. 513; pp. 495 - 508
Main Authors Fahy, Conor, Yang, Shengxiang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesAdvances in Intelligent Systems and Computing
Subjects
Online AccessGet full text
ISBN3319465619
9783319465616
ISSN2194-5357
2194-5365
DOI10.1007/978-3-319-46562-3_32

Cover

More Information
Summary:Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the statistical properties of the data can change over time. This paper presents a bio-inspired approach to clustering non-stationary data streams. The proposed algorithm, Ant-Colony Stream Clustering (ACSC), is based on the concept of artificial ants which identify clusters as nests of micro-clusters in dense areas of the data. Micro-clusters are N-dimensional spheres with a maximum radius ε $$\varepsilon $$ . In ACSC the ε $$\varepsilon $$ -neighbourhood, crucial in density clustering, is adaptive and doesn’t require expert, data-dependent tuning. The algorithm uses the sliding window model and summary statistics for each window are stored offline. Experimental results over real and synthetic datasets show that the clustering quality of ACSC is comparable or favourable to leading stream-clustering algorithms while requiring fewer parameters and considerably less computation.
Bibliography:Original Abstract: Data stream mining is the process of extracting knowledge from continuous sequences of data. It differs from conventional data mining in that a stream is potentially unbounded, data points arrive online and each data point can be examined only once. Furthermore, in non-stationary environments the statistical properties of the data can change over time. This paper presents a bio-inspired approach to clustering non-stationary data streams. The proposed algorithm, Ant-Colony Stream Clustering (ACSC), is based on the concept of artificial ants which identify clusters as nests of micro-clusters in dense areas of the data. Micro-clusters are N-dimensional spheres with a maximum radius ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. In ACSC the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-neighbourhood, crucial in density clustering, is adaptive and doesn’t require expert, data-dependent tuning. The algorithm uses the sliding window model and summary statistics for each window are stored offline. Experimental results over real and synthetic datasets show that the clustering quality of ACSC is comparable or favourable to leading stream-clustering algorithms while requiring fewer parameters and considerably less computation.
ISBN:3319465619
9783319465616
ISSN:2194-5357
2194-5365
DOI:10.1007/978-3-319-46562-3_32