De-noising of Contrast-Enhanced MRI Sequences by an Ensemble of Expert Deep Neural Networks
Dynamic contrast-enhanced MRI (DCE-MRI) is an imaging protocol where MRI scans are acquired repetitively throughout the injection of a contrast agent. The analysis of dynamic scans is widely used for the detection and quantification of blood brain barrier (BBB) permeability. Extraction of the pharma...
Saved in:
| Published in | Deep Learning and Data Labeling for Medical Applications Vol. 10008; pp. 95 - 110 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2016
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783319469751 3319469754 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-319-46976-8_11 |
Cover
| Summary: | Dynamic contrast-enhanced MRI (DCE-MRI) is an imaging protocol where MRI scans are acquired repetitively throughout the injection of a contrast agent. The analysis of dynamic scans is widely used for the detection and quantification of blood brain barrier (BBB) permeability. Extraction of the pharmacokinetic (PK) parameters from the DCE-MRI washout curves allows quantitative assessment of the BBB functionality. Nevertheless, curve fitting required for the analysis of DCE-MRI data is error-prone as the dynamic scans are subject to non-white, spatially-dependent and anisotropic noise that does not fit standard noise models. The two existing approaches i.e. curve smoothing and image de-noising can either produce smooth curves but cannot guaranty fidelity to the PK model or cannot accommodate the high variability in noise statistics in time and space.
We present a novel framework based on Deep Neural Networks (DNNs) to address the DCE-MRI de-noising challenges. The key idea is based on an ensembling of expert DNNs, where each is trained for different noise characteristics and curve prototypes to solve an inverse problem on a specific subset of the input space. The most likely reconstruction is then chosen using a classifier DNN. As ground-truth (clean) signals for training are not available, a model for generating realistic training sets with complex nonlinear dynamics is presented. The proposed approach has been applied to DCE-MRI scans of stroke and brain tumor patients and is shown to favorably compare to state-of-the-art de-noising methods, without degrading the contrast of the original images. |
|---|---|
| ISBN: | 9783319469751 3319469754 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-319-46976-8_11 |