Partial Covering Arrays: Algorithms and Asymptotics

A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains eacht-tuple of $$\{1, 2, \ldots , v\}^t$$ among its rows. Covering arrays find application in interaction testing, including software and ha...

Full description

Saved in:
Bibliographic Details
Published inCombinatorial Algorithms Vol. 9843; pp. 437 - 448
Main Authors Sarkar, Kaushik, Colbourn, Charles J., de Bonis, Annalisa, Vaccaro, Ugo
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319445421
9783319445427
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-44543-4_34

Cover

Abstract A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains eacht-tuple of $$\{1, 2, \ldots , v\}^t$$ among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound $$\mathsf {CAN}(t,k,v)$$ , the minimum number N of rows of a $$\mathsf {CA}(N;t,k,v)$$ . The well known bound $$\mathsf {CAN}(t,k,v)=O((t-1)v^t\log k)$$ is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set $$\{1, 2, \ldots , v\}^t$$ need only be contained among the rows of at least $$(1-\epsilon )\left( {\begin{array}{c}k\\ t\end{array}}\right) $$ of the $$N\times t$$ subarrays and (2) the rows of every $$N\times t$$ subarray need only contain a (large) subset of $$\{1, 2, \ldots , v\}^t$$ . In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time.
AbstractList A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains eacht-tuple of $$\{1, 2, \ldots , v\}^t$$ among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound $$\mathsf {CAN}(t,k,v)$$ , the minimum number N of rows of a $$\mathsf {CA}(N;t,k,v)$$ . The well known bound $$\mathsf {CAN}(t,k,v)=O((t-1)v^t\log k)$$ is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set $$\{1, 2, \ldots , v\}^t$$ need only be contained among the rows of at least $$(1-\epsilon )\left( {\begin{array}{c}k\\ t\end{array}}\right) $$ of the $$N\times t$$ subarrays and (2) the rows of every $$N\times t$$ subarray need only contain a (large) subset of $$\{1, 2, \ldots , v\}^t$$ . In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time.
Author Sarkar, Kaushik
Colbourn, Charles J.
Vaccaro, Ugo
de Bonis, Annalisa
Author_xml – sequence: 1
  givenname: Kaushik
  surname: Sarkar
  fullname: Sarkar, Kaushik
  email: ksarkar1@asu.edu
  organization: CIDSE, Arizona State University, Tempe, USA
– sequence: 2
  givenname: Charles J.
  surname: Colbourn
  fullname: Colbourn, Charles J.
  organization: CIDSE, Arizona State University, Tempe, USA
– sequence: 3
  givenname: Annalisa
  surname: de Bonis
  fullname: de Bonis, Annalisa
  organization: Dipartimento di Informatica, University of Salerno, Fisciano, Italy
– sequence: 4
  givenname: Ugo
  surname: Vaccaro
  fullname: Vaccaro, Ugo
  organization: Dipartimento di Informatica, University of Salerno, Fisciano, Italy
BookMark eNqNkMtOwzAQRQ0URFv6ByzyAwaPx4-YXVXxkirBAtaWkzhtIE2CHZD696QtsGY10h2d0dwzIaOmbTwhl8CugDF9bXRKkSIYKoQUSIVFcURmQ4xDuM_EMRmDAqCIwpyQye-Cw4iMGTJOjRZ4RsZGauCIUpyTWYxvjDHQnCGmY4LPLvSVq5NF--VD1aySeQhuG2-Seb1qQ9WvNzFxTZHM43bT9W1f5fGCnJaujn72M6fk9e72ZfFAl0_3j4v5knY8TXuKCr1HUbiCZz7NRQYadMnBG-2VzAo0RngPGeQSmJZqqMbSEkuvcpdpw3FK-OFu7Haf-WCztn2PFpjdKbIDYNEOpe1eh90pGiBxgLrQfnz62Fu_o3Lf9MHV-dp1vQ_RKm5SMGqglRVo_otJmSqJ_A_7BnrOd9c
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2016
Copyright_xml – notice: Springer International Publishing Switzerland 2016
DBID FFUUA
DEWEY 511.6
DOI 10.1007/978-3-319-44543-4_34
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9783319445434
331944543X
EISSN 1611-3349
Editor Puglisi, Simon J
Mäkinen, Veli
Salmela, Leena
Editor_xml – sequence: 1
  fullname: Mäkinen, Veli
– sequence: 2
  fullname: Salmela, Leena
– sequence: 3
  fullname: Puglisi, Simon J
EndPage 448
ExternalDocumentID EBC6298196_316_439
EBC5586532_316_439
GroupedDBID 0D6
0DA
38.
AABBV
AAMCO
AAPIT
AAQZU
ABBVZ
ABMNI
ABOWU
ACLMJ
ADCXD
ADPGQ
AEDXK
AEJGN
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
AORVH
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
SBO
SWNTM
TPJZQ
TSXQS
Z83
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ACGFS
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p288t-363ee34dad2be8c4b1717f21e97e65bd3994ee1b1c51075697808f3fe6cab7923
ISBN 3319445421
9783319445427
ISSN 0302-9743
IngestDate Wed Sep 17 03:01:21 EDT 2025
Thu May 29 18:46:55 EDT 2025
Thu May 29 16:00:09 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.M35nbsp;QA16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p288t-363ee34dad2be8c4b1717f21e97e65bd3994ee1b1c51075697808f3fe6cab7923
Notes Original Abstract: A covering array \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CA}(N;t,k,v)$$\end{document} is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times k$$\end{document} array with entries in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}$$\end{document}, for which every\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarray contains eacht-tuple of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document} among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CAN}(t,k,v)$$\end{document}, the minimum number N of rows of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CA}(N;t,k,v)$$\end{document}. The well known bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CAN}(t,k,v)=O((t-1)v^t\log k)$$\end{document} is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document} need only be contained among the rows of at least\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\epsilon )\left( {\begin{array}{c}k\\ t\end{array}}\right) $$\end{document} of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarrays and (2) the rows of every\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarray need only contain a (large) subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document}. In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time.
OCLC 957123354
1197552690
PQID EBC5586532_316_439
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_319_44543_4_34
proquest_ebookcentralchapters_6298196_316_439
proquest_ebookcentralchapters_5586532_316_439
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 27th International Workshop, IWOCA 2016, Helsinki, Finland, August 17-19, 2016, Proceedings
PublicationTitle Combinatorial Algorithms
PublicationYear 2016
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Madras, Indian Institute of Technology, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0001720338
ssj0002792
Score 1.8650265
Snippet A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains...
SourceID springer
proquest
SourceType Publisher
StartPage 437
SubjectTerms Discrete mathematics
Title Partial Covering Arrays: Algorithms and Asymptotics
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5586532&ppg=439
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6298196&ppg=439
http://link.springer.com/10.1007/978-3-319-44543-4_34
Volume 9843
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgubQ9FGgraAvKgRsyavwVp7cUbUEIUA9QcbPixGkPsLts0kr013cmscluQEJwiazIiSZ5tuV543lDyJ5LHB6eEtRWoqKCJSm1PKmozYWulGTKtvVTzs7V8aU4uZJXfWnENruksQfFv0fzSl6CKtwDXDFL9hnI3r8UbkAb8IUrIAzXweZ3mWbtdAWmN-DVos-MpHd2_QsazW8vPu4HwQ8cGC098LeVHNzP5vP8ru64-fBAGz_I6rubWTNtwuF3TwTEQyIgEIEDKnGBzcqOlpxHDrNPCCm63PywGqa6k016sLQunqbAzCd8lFNhPBe5pGQtOoGigZL1-NuhYilsQZThsTLYaXZLsQAYBsp9NZRVsgqmjchaNj45_dnTZRgu5hqzc4LZcaef1H_GQmbkY2Yu-RCDsHe7m7hYJ28wwyTC1A8wfIOsuMkmeRvqa0R-ud0kr8_uNXXrd4R7MKMAZtSB-TXqoYwAymgByvfk8vv44vCY-pIXdMa0bihX3Dkuyrxk1ulC2Bjc7YrFLk2ckraE7aRwLrZxAWtpIhXqR-mKV04VuUUpyA9kNJlO3BaJYpsKq2DyuRIaVZGWX2yeaF2kmuUFk9uEht9h2sC8Pw1cdB9fGym1kpwFrJ7sP8B2m-yHf2ywe22CQjYYbTh0S00LjkFwPj7z7Z_Iq34OfCajZv7H7cD2sLG7fuj8B4gCYOY
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Combinatorial+Algorithms&rft.atitle=Partial+Covering+Arrays%3A+Algorithms+and+Asymptotics&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319445427&rft.volume=9843&rft_id=info:doi/10.1007%2F978-3-319-44543-4_34&rft.externalDBID=439&rft.externalDocID=EBC6298196_316_439
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5586532-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6298196-l.jpg