Partial Covering Arrays: Algorithms and Asymptotics
A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains eacht-tuple of $$\{1, 2, \ldots , v\}^t$$ among its rows. Covering arrays find application in interaction testing, including software and ha...
Saved in:
| Published in | Combinatorial Algorithms Vol. 9843; pp. 437 - 448 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2016
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3319445421 9783319445427 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-319-44543-4_34 |
Cover
| Abstract | A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains eacht-tuple of $$\{1, 2, \ldots , v\}^t$$ among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound $$\mathsf {CAN}(t,k,v)$$ , the minimum number N of rows of a $$\mathsf {CA}(N;t,k,v)$$ . The well known bound $$\mathsf {CAN}(t,k,v)=O((t-1)v^t\log k)$$ is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set $$\{1, 2, \ldots , v\}^t$$ need only be contained among the rows of at least $$(1-\epsilon )\left( {\begin{array}{c}k\\ t\end{array}}\right) $$ of the $$N\times t$$ subarrays and (2) the rows of every $$N\times t$$ subarray need only contain a (large) subset of $$\{1, 2, \ldots , v\}^t$$ . In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time. |
|---|---|
| AbstractList | A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains eacht-tuple of $$\{1, 2, \ldots , v\}^t$$ among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound $$\mathsf {CAN}(t,k,v)$$ , the minimum number N of rows of a $$\mathsf {CA}(N;t,k,v)$$ . The well known bound $$\mathsf {CAN}(t,k,v)=O((t-1)v^t\log k)$$ is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set $$\{1, 2, \ldots , v\}^t$$ need only be contained among the rows of at least $$(1-\epsilon )\left( {\begin{array}{c}k\\ t\end{array}}\right) $$ of the $$N\times t$$ subarrays and (2) the rows of every $$N\times t$$ subarray need only contain a (large) subset of $$\{1, 2, \ldots , v\}^t$$ . In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time. |
| Author | Sarkar, Kaushik Colbourn, Charles J. Vaccaro, Ugo de Bonis, Annalisa |
| Author_xml | – sequence: 1 givenname: Kaushik surname: Sarkar fullname: Sarkar, Kaushik email: ksarkar1@asu.edu organization: CIDSE, Arizona State University, Tempe, USA – sequence: 2 givenname: Charles J. surname: Colbourn fullname: Colbourn, Charles J. organization: CIDSE, Arizona State University, Tempe, USA – sequence: 3 givenname: Annalisa surname: de Bonis fullname: de Bonis, Annalisa organization: Dipartimento di Informatica, University of Salerno, Fisciano, Italy – sequence: 4 givenname: Ugo surname: Vaccaro fullname: Vaccaro, Ugo organization: Dipartimento di Informatica, University of Salerno, Fisciano, Italy |
| BookMark | eNqNkMtOwzAQRQ0URFv6ByzyAwaPx4-YXVXxkirBAtaWkzhtIE2CHZD696QtsGY10h2d0dwzIaOmbTwhl8CugDF9bXRKkSIYKoQUSIVFcURmQ4xDuM_EMRmDAqCIwpyQye-Cw4iMGTJOjRZ4RsZGauCIUpyTWYxvjDHQnCGmY4LPLvSVq5NF--VD1aySeQhuG2-Seb1qQ9WvNzFxTZHM43bT9W1f5fGCnJaujn72M6fk9e72ZfFAl0_3j4v5knY8TXuKCr1HUbiCZz7NRQYadMnBG-2VzAo0RngPGeQSmJZqqMbSEkuvcpdpw3FK-OFu7Haf-WCztn2PFpjdKbIDYNEOpe1eh90pGiBxgLrQfnz62Fu_o3Lf9MHV-dp1vQ_RKm5SMGqglRVo_otJmSqJ_A_7BnrOd9c |
| ContentType | Book Chapter |
| Copyright | Springer International Publishing Switzerland 2016 |
| Copyright_xml | – notice: Springer International Publishing Switzerland 2016 |
| DBID | FFUUA |
| DEWEY | 511.6 |
| DOI | 10.1007/978-3-319-44543-4_34 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISBN | 9783319445434 331944543X |
| EISSN | 1611-3349 |
| Editor | Puglisi, Simon J Mäkinen, Veli Salmela, Leena |
| Editor_xml | – sequence: 1 fullname: Mäkinen, Veli – sequence: 2 fullname: Salmela, Leena – sequence: 3 fullname: Puglisi, Simon J |
| EndPage | 448 |
| ExternalDocumentID | EBC6298196_316_439 EBC5586532_316_439 |
| GroupedDBID | 0D6 0DA 38. AABBV AAMCO AAPIT AAQZU ABBVZ ABMNI ABOWU ACLMJ ADCXD ADPGQ AEDXK AEJGN AEJLV AEKFX AETDV AEZAY ALMA_UNASSIGNED_HOLDINGS AORVH AZZ BBABE CZZ FFUUA I4C IEZ SBO SWNTM TPJZQ TSXQS Z83 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ACGFS AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 |
| ID | FETCH-LOGICAL-p288t-363ee34dad2be8c4b1717f21e97e65bd3994ee1b1c51075697808f3fe6cab7923 |
| ISBN | 3319445421 9783319445427 |
| ISSN | 0302-9743 |
| IngestDate | Wed Sep 17 03:01:21 EDT 2025 Thu May 29 18:46:55 EDT 2025 Thu May 29 16:00:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCallNum | QA76.9.M35nbsp;QA16 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p288t-363ee34dad2be8c4b1717f21e97e65bd3994ee1b1c51075697808f3fe6cab7923 |
| Notes | Original Abstract: A covering array \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CA}(N;t,k,v)$$\end{document} is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times k$$\end{document} array with entries in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}$$\end{document}, for which every\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarray contains eacht-tuple of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document} among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CAN}(t,k,v)$$\end{document}, the minimum number N of rows of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CA}(N;t,k,v)$$\end{document}. The well known bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CAN}(t,k,v)=O((t-1)v^t\log k)$$\end{document} is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document} need only be contained among the rows of at least\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\epsilon )\left( {\begin{array}{c}k\\ t\end{array}}\right) $$\end{document} of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarrays and (2) the rows of every\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarray need only contain a (large) subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document}. In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time. |
| OCLC | 957123354 1197552690 |
| PQID | EBC5586532_316_439 |
| PageCount | 12 |
| ParticipantIDs | springer_books_10_1007_978_3_319_44543_4_34 proquest_ebookcentralchapters_6298196_316_439 proquest_ebookcentralchapters_5586532_316_439 |
| PublicationCentury | 2000 |
| PublicationDate | 2016 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – year: 2016 text: 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | 27th International Workshop, IWOCA 2016, Helsinki, Finland, August 17-19, 2016, Proceedings |
| PublicationTitle | Combinatorial Algorithms |
| PublicationYear | 2016 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, United Kingdom – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, United Kingdom – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Madras, Indian Institute of Technology, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max Planck Institute for Informatics, Saarbrücken, Germany |
| SSID | ssj0001720338 ssj0002792 |
| Score | 1.8650265 |
| Snippet | A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains... |
| SourceID | springer proquest |
| SourceType | Publisher |
| StartPage | 437 |
| SubjectTerms | Discrete mathematics |
| Title | Partial Covering Arrays: Algorithms and Asymptotics |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5586532&ppg=439 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6298196&ppg=439 http://link.springer.com/10.1007/978-3-319-44543-4_34 |
| Volume | 9843 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgubQ9FGgraAvKgRsyavwVp7cUbUEIUA9QcbPixGkPsLts0kr013cmscluQEJwiazIiSZ5tuV543lDyJ5LHB6eEtRWoqKCJSm1PKmozYWulGTKtvVTzs7V8aU4uZJXfWnENruksQfFv0fzSl6CKtwDXDFL9hnI3r8UbkAb8IUrIAzXweZ3mWbtdAWmN-DVos-MpHd2_QsazW8vPu4HwQ8cGC098LeVHNzP5vP8ru64-fBAGz_I6rubWTNtwuF3TwTEQyIgEIEDKnGBzcqOlpxHDrNPCCm63PywGqa6k016sLQunqbAzCd8lFNhPBe5pGQtOoGigZL1-NuhYilsQZThsTLYaXZLsQAYBsp9NZRVsgqmjchaNj45_dnTZRgu5hqzc4LZcaef1H_GQmbkY2Yu-RCDsHe7m7hYJ28wwyTC1A8wfIOsuMkmeRvqa0R-ud0kr8_uNXXrd4R7MKMAZtSB-TXqoYwAymgByvfk8vv44vCY-pIXdMa0bihX3Dkuyrxk1ulC2Bjc7YrFLk2ckraE7aRwLrZxAWtpIhXqR-mKV04VuUUpyA9kNJlO3BaJYpsKq2DyuRIaVZGWX2yeaF2kmuUFk9uEht9h2sC8Pw1cdB9fGym1kpwFrJ7sP8B2m-yHf2ywe22CQjYYbTh0S00LjkFwPj7z7Z_Iq34OfCajZv7H7cD2sLG7fuj8B4gCYOY |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Combinatorial+Algorithms&rft.atitle=Partial+Covering+Arrays%3A+Algorithms+and+Asymptotics&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319445427&rft.volume=9843&rft_id=info:doi/10.1007%2F978-3-319-44543-4_34&rft.externalDBID=439&rft.externalDocID=EBC6298196_316_439 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5586532-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6298196-l.jpg |