Partial Covering Arrays: Algorithms and Asymptotics
A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains eacht-tuple of $$\{1, 2, \ldots , v\}^t$$ among its rows. Covering arrays find application in interaction testing, including software and ha...
Saved in:
| Published in | Combinatorial Algorithms Vol. 9843; pp. 437 - 448 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2016
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3319445421 9783319445427 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-319-44543-4_34 |
Cover
| Summary: | A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains eacht-tuple of $$\{1, 2, \ldots , v\}^t$$ among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound $$\mathsf {CAN}(t,k,v)$$ , the minimum number N of rows of a $$\mathsf {CA}(N;t,k,v)$$ . The well known bound $$\mathsf {CAN}(t,k,v)=O((t-1)v^t\log k)$$ is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set $$\{1, 2, \ldots , v\}^t$$ need only be contained among the rows of at least $$(1-\epsilon )\left( {\begin{array}{c}k\\ t\end{array}}\right) $$ of the $$N\times t$$ subarrays and (2) the rows of every $$N\times t$$ subarray need only contain a (large) subset of $$\{1, 2, \ldots , v\}^t$$ . In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time. |
|---|---|
| Bibliography: | Original Abstract: A covering array \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CA}(N;t,k,v)$$\end{document} is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times k$$\end{document} array with entries in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}$$\end{document}, for which every\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarray contains eacht-tuple of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document} among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CAN}(t,k,v)$$\end{document}, the minimum number N of rows of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CA}(N;t,k,v)$$\end{document}. The well known bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CAN}(t,k,v)=O((t-1)v^t\log k)$$\end{document} is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document} need only be contained among the rows of at least\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\epsilon )\left( {\begin{array}{c}k\\ t\end{array}}\right) $$\end{document} of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarrays and (2) the rows of every\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarray need only contain a (large) subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document}. In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time. |
| ISBN: | 3319445421 9783319445427 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-319-44543-4_34 |