Partial Covering Arrays: Algorithms and Asymptotics

A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains eacht-tuple of $$\{1, 2, \ldots , v\}^t$$ among its rows. Covering arrays find application in interaction testing, including software and ha...

Full description

Saved in:
Bibliographic Details
Published inCombinatorial Algorithms Vol. 9843; pp. 437 - 448
Main Authors Sarkar, Kaushik, Colbourn, Charles J., de Bonis, Annalisa, Vaccaro, Ugo
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319445421
9783319445427
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-44543-4_34

Cover

More Information
Summary:A covering array $$\mathsf {CA}(N;t,k,v)$$ is an $$N\times k$$ array with entries in $$\{1, 2, \ldots , v\}$$ , for which every $$N\times t$$ subarray contains eacht-tuple of $$\{1, 2, \ldots , v\}^t$$ among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound $$\mathsf {CAN}(t,k,v)$$ , the minimum number N of rows of a $$\mathsf {CA}(N;t,k,v)$$ . The well known bound $$\mathsf {CAN}(t,k,v)=O((t-1)v^t\log k)$$ is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set $$\{1, 2, \ldots , v\}^t$$ need only be contained among the rows of at least $$(1-\epsilon )\left( {\begin{array}{c}k\\ t\end{array}}\right) $$ of the $$N\times t$$ subarrays and (2) the rows of every $$N\times t$$ subarray need only contain a (large) subset of $$\{1, 2, \ldots , v\}^t$$ . In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time.
Bibliography:Original Abstract: A covering array \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CA}(N;t,k,v)$$\end{document} is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times k$$\end{document} array with entries in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}$$\end{document}, for which every\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarray contains eacht-tuple of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document} among its rows. Covering arrays find application in interaction testing, including software and hardware testing, advanced materials development, and biological systems. A central question is to determine or bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CAN}(t,k,v)$$\end{document}, the minimum number N of rows of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CA}(N;t,k,v)$$\end{document}. The well known bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CAN}(t,k,v)=O((t-1)v^t\log k)$$\end{document} is not too far from being asymptotically optimal. Sensible relaxations of the covering requirement arise when (1) the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document} need only be contained among the rows of at least\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\epsilon )\left( {\begin{array}{c}k\\ t\end{array}}\right) $$\end{document} of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarrays and (2) the rows of every\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times t$$\end{document} subarray need only contain a (large) subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, 2, \ldots , v\}^t$$\end{document}. In this paper, using probabilistic methods, significant improvements on the covering array upper bound are established for both relaxations, and for the conjunction of the two. In each case, a randomized algorithm constructs such arrays in expected polynomial time.
ISBN:3319445421
9783319445427
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-44543-4_34