Local Probabilistic Atlases and a Posteriori Correction for the Segmentation of Heart Images
Atlas-based segmentation is a well-known method for segmentation of medical images. In particular, this method could be used in an efficient way to automatically segment heart structures in MRI or CT scans. We propose, in this paper a more adaptive and interactive atlas-based segmentation method. Th...
Saved in:
| Published in | Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges Vol. 10663; pp. 207 - 214 |
|---|---|
| Main Authors | , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783319755403 3319755404 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-319-75541-0_22 |
Cover
| Abstract | Atlas-based segmentation is a well-known method for segmentation of medical images. In particular, this method could be used in an efficient way to automatically segment heart structures in MRI or CT scans. We propose, in this paper a more adaptive and interactive atlas-based segmentation method. The model presented combines several local probabilistic atlases with a topological graph. The local atlases provide more refined information about the structures’ shape while the spatial relationships between the atlases are learned and stored in a graph. Hence, local registrations need less computational time and the image segmentation can be guided by the user in an incremental way. Following this step, a pixel classification is performed with a hidden Markov random field that integrates the learned a priori information with the pixel intensities that originate from different modalities. Finally, an a posteriori correction is performed using Adaboost classifiers in order to correct voxels in the border of the seek region and improve the precision of the results. The proposed method is tested on CT scan and MRI images of the heart coming from the MM-WHS challenge. |
|---|---|
| AbstractList | Atlas-based segmentation is a well-known method for segmentation of medical images. In particular, this method could be used in an efficient way to automatically segment heart structures in MRI or CT scans. We propose, in this paper a more adaptive and interactive atlas-based segmentation method. The model presented combines several local probabilistic atlases with a topological graph. The local atlases provide more refined information about the structures’ shape while the spatial relationships between the atlases are learned and stored in a graph. Hence, local registrations need less computational time and the image segmentation can be guided by the user in an incremental way. Following this step, a pixel classification is performed with a hidden Markov random field that integrates the learned a priori information with the pixel intensities that originate from different modalities. Finally, an a posteriori correction is performed using Adaboost classifiers in order to correct voxels in the border of the seek region and improve the precision of the results. The proposed method is tested on CT scan and MRI images of the heart coming from the MM-WHS challenge. |
| Author | Galisot, Gaetan Ramel, Jean-Yves Brouard, Thierry |
| Author_xml | – sequence: 1 givenname: Gaetan surname: Galisot fullname: Galisot, Gaetan email: gaetan.galisot@univ-tours.fr – sequence: 2 givenname: Thierry surname: Brouard fullname: Brouard, Thierry – sequence: 3 givenname: Jean-Yves surname: Ramel fullname: Ramel, Jean-Yves |
| BookMark | eNqNkMFuEzEQhg0tiKTkDTj4BQxjT2yvj1VEaaVIrUR7q2R5vZN0YbsOtnl_nBQ49zTSP_ON9H9Ldj6nmRj7JOGzBLBfnO0ECpROWK3XUoBX6g1bYktOgXrLFtJIKRDX7oyt2v2_HeA5WwCCEs6u8T1bSlAOtNay-8BWpfwAAOk6K6VbsMdtimHidzn1oR-nsdQx8ss6hUKFh3nggd-lUimPKY98k3KmWMc0813KvD4R_077Z5prOIVpx68p5MpvnsOeykf2bhemQqu_84I9XH2931yL7e23m83lVhxU11Whot6B7btgyVC06NCawdqOrOrjgAp6GIzpdYikMBqN0ho1mNAPGikS4AVTL3_LIY_znrLvU_pZvAR_lOmbHI--6fEnd_4os0HrF-iQ06_fVKqnIxVbmRym-BQOrXXxBptKUI3QXkn9Wkxrpwzo_9gfN-uG_Q |
| ContentType | Book Chapter |
| Copyright | Springer International Publishing AG, part of Springer Nature 2018 |
| Copyright_xml | – notice: Springer International Publishing AG, part of Springer Nature 2018 |
| DBID | FFUUA |
| DEWEY | 611.12 |
| DOI | 10.1007/978-3-319-75541-0_22 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Anatomy & Physiology Computer Science |
| EISBN | 3319755412 9783319755410 |
| EISSN | 1611-3349 |
| Editor | Yang, Guang Sermesant, Maxime Bernard, Olivier Young, Alistair Lalande, Alain Zhuang, Xiahai Pop, Mihaela Jodoin, Pierre-Marc |
| Editor_xml | – sequence: 1 fullname: Yang, Guang – sequence: 2 fullname: Sermesant, Maxime – sequence: 3 fullname: Bernard, Olivier – sequence: 4 fullname: Young, Alistair – sequence: 5 fullname: Lalande, Alain – sequence: 6 fullname: Zhuang, Xiahai – sequence: 7 fullname: Pop, Mihaela – sequence: 8 fullname: Jodoin, Pierre-Marc |
| EndPage | 214 |
| ExternalDocumentID | EBC6303002_225_215 EBC5592605_225_215 |
| GroupedDBID | 0D6 0DA 38. AABBV ABFTD ABPUQ ACOUV ADIEE AEDXK AEJLV AEKFX AEZAY ALMA_UNASSIGNED_HOLDINGS ANXHU AZZ BBABE BICGV BJAWL BUBNW CVGDX CZZ EDOXC FFUUA FOYMO I4C IEZ NQNQZ OEBZI SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 |
| ID | FETCH-LOGICAL-p288t-2c5f07b8a7e6ec739376d778e72bcd320b0d66b5ace23c6531762d6abd53ece03 |
| ISBN | 9783319755403 3319755404 |
| ISSN | 0302-9743 |
| IngestDate | Wed Sep 17 03:04:21 EDT 2025 Thu Apr 10 10:58:34 EDT 2025 Wed May 28 23:24:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCallNum | TA1637-1638TA1634Q33 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p288t-2c5f07b8a7e6ec739376d778e72bcd320b0d66b5ace23c6531762d6abd53ece03 |
| OCLC | 1029055518 |
| PQID | EBC5592605_225_215 |
| PageCount | 8 |
| ParticipantIDs | springer_books_10_1007_978_3_319_75541_0_22 proquest_ebookcentralchapters_6303002_225_215 proquest_ebookcentralchapters_5592605_225_215 |
| PublicationCentury | 2000 |
| PublicationDate | 2018 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers |
| PublicationTitle | Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges |
| PublicationYear | 2018 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard |
| SSID | ssj0001987119 ssj0002792 |
| Score | 1.8959295 |
| Snippet | Atlas-based segmentation is a well-known method for segmentation of medical images. In particular, this method could be used in an efficient way to... |
| SourceID | springer proquest |
| SourceType | Publisher |
| StartPage | 207 |
| SubjectTerms | AdaBoost Classifier Hidden Markov Random Field (HMRF) Local Atlas Posteriori Correction Priori Information |
| Title | Local Probabilistic Atlases and a Posteriori Correction for the Segmentation of Heart Images |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5592605&ppg=215 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6303002&ppg=215 http://link.springer.com/10.1007/978-3-319-75541-0_22 |
| Volume | 10663 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbockEcgBZEeckHxGWVKtk8ewzLwlJ1udBCD0iW7TgVh90tm3CAX883dkIeWgmVSxRFTuzksycz4_lmGHstIxkkZQIEskx70G8zyEEVUeBaTPZzqkpy6K8-JcvL6Owqvuq2Yiy7pFYn-vdeXsn_oIprwJVYsrdA9u9DcQHnwBdHIIzjSPkdulkdh4M20Svnis5rKMHGpVt2dRpaHx_VOnMJkknDXGJe1yfTfP7OxWyuVl-XlmHgCqpU_Ql0Tn85IhIom4SXehr0I22hX7zmdvcdne6s6OzFLX421-uG2GRVUtv39ONatv00voYgG_kaWl_jyFvZc5jlHwb2aYgFnkJh8cOBwCU1Z6_47kdsELuK7sUIhKMuD7NlzxwNdJQte_F2nuCvDDmPm2JBjW5-eFRkjDbjm4orB-wAY5uwu_ni7PxL55I7hfUYnBIDqB23Sx3Ze48e-3LfMAd2ymhr3WosFw_ZfWKxcKKXYOCP2B2zOWRHOb7mdv2Lv-E28tduqRyyB40pwhtBXx2xbxZ9PkCfN-hzoM8l79DnHfoc6HOgz_vo823JLfrcof-YXb5fXMyXXlOIw7vB4q29mY5LrNpMpiYx2uZQTIo0zUw6U7oIZ77yiyRRsdRmFuoEYh2_2CKRqohDQwXpnrDJZrsxTxkv_SLVgTR-oKII2reSpvQjHZUZwZaFx8xrP6Cw4QJNjLJ2n6sSsIDJBG_R_Wf70Ww4ZtMWFUHNK9Hm7QacIhSAU1g4BcH57JZPf87udcvmBZvUu5_mJZTWWr1qJtsfouGVIg |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Statistical+Atlases+and+Computational+Models+of+the+Heart.+ACDC+and+MMWHS+Challenges&rft.atitle=Local+Probabilistic+Atlases+and+a+Posteriori+Correction+for+the+Segmentation+of+Heart+Images&rft.date=2018-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319755403&rft.volume=10663&rft_id=info:doi/10.1007%2F978-3-319-75541-0_22&rft.externalDBID=215&rft.externalDocID=EBC6303002_225_215 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5592605-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6303002-l.jpg |