Local Probabilistic Atlases and a Posteriori Correction for the Segmentation of Heart Images

Atlas-based segmentation is a well-known method for segmentation of medical images. In particular, this method could be used in an efficient way to automatically segment heart structures in MRI or CT scans. We propose, in this paper a more adaptive and interactive atlas-based segmentation method. Th...

Full description

Saved in:
Bibliographic Details
Published inStatistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges Vol. 10663; pp. 207 - 214
Main Authors Galisot, Gaetan, Brouard, Thierry, Ramel, Jean-Yves
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319755403
3319755404
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-75541-0_22

Cover

More Information
Summary:Atlas-based segmentation is a well-known method for segmentation of medical images. In particular, this method could be used in an efficient way to automatically segment heart structures in MRI or CT scans. We propose, in this paper a more adaptive and interactive atlas-based segmentation method. The model presented combines several local probabilistic atlases with a topological graph. The local atlases provide more refined information about the structures’ shape while the spatial relationships between the atlases are learned and stored in a graph. Hence, local registrations need less computational time and the image segmentation can be guided by the user in an incremental way. Following this step, a pixel classification is performed with a hidden Markov random field that integrates the learned a priori information with the pixel intensities that originate from different modalities. Finally, an a posteriori correction is performed using Adaboost classifiers in order to correct voxels in the border of the seek region and improve the precision of the results. The proposed method is tested on CT scan and MRI images of the heart coming from the MM-WHS challenge.
ISBN:9783319755403
3319755404
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-75541-0_22