Exploring Naccache-Stern Knapsack Encryption
The Naccache-Stern public-key cryptosystem (NS) relies on the conjectured hardness of the modular multiplicative knapsack problem: Given $$p,\{v_i\},\prod v_i^{m_i} \bmod p$$ , find the $$\{m_i\}$$ . Given this scheme’s algebraic structure it is interesting to systematically explore its variants and...
Saved in:
| Published in | Innovative Security Solutions for Information Technology and Communications Vol. 10543; pp. 67 - 82 |
|---|---|
| Main Authors | , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2017
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Online Access | Get full text |
| ISBN | 3319692836 9783319692838 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-319-69284-5_6 |
Cover
| Summary: | The Naccache-Stern public-key cryptosystem (NS) relies on the conjectured hardness of the modular multiplicative knapsack problem: Given $$p,\{v_i\},\prod v_i^{m_i} \bmod p$$ , find the $$\{m_i\}$$ .
Given this scheme’s algebraic structure it is interesting to systematically explore its variants and generalizations. In particular it might be useful to enhance NS with features such as semantic security, re-randomizability or an extension to higher-residues.
This paper addresses these questions and proposes several such variants. |
|---|---|
| Bibliography: | Original Abstract: The Naccache-Stern public-key cryptosystem (NS) relies on the conjectured hardness of the modular multiplicative knapsack problem: Given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,\{v_i\},\prod v_i^{m_i} \bmod p$$\end{document}, find the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{m_i\}$$\end{document}. Given this scheme’s algebraic structure it is interesting to systematically explore its variants and generalizations. In particular it might be useful to enhance NS with features such as semantic security, re-randomizability or an extension to higher-residues. This paper addresses these questions and proposes several such variants. |
| ISBN: | 3319692836 9783319692838 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-319-69284-5_6 |