Deep Learning Estimation of Multi-Tissue Constrained Spherical Deconvolution with Limited Single Shell DW-MRI
Diffusion-weighted magnetic resonance imaging (DW-MRI) is the only non-invasive approach for estimation of intra-voxel tissue microarchitecture and reconstruction of in vivo neural pathways for the human brain. With improvement in accelerated MRI acquisition technologies, DW-MRI protocols that make...
Saved in:
| Published in | Proceedings of SPIE, the international society for optical engineering Vol. 11313 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.02.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0277-786X 1996-756X |
| DOI | 10.1117/12.2549455 |
Cover
| Summary: | Diffusion-weighted magnetic resonance imaging (DW-MRI) is the only non-invasive approach for estimation of intra-voxel tissue microarchitecture and reconstruction of in vivo neural pathways for the human brain. With improvement in accelerated MRI acquisition technologies, DW-MRI protocols that make use of multiple levels of diffusion sensitization have gained popularity. A well-known advanced method for reconstruction of white matter microstructure that uses multi-shell data is multi-tissue constrained spherical deconvolution (MT-CSD). MT-CSD substantially improves the resolution of intra-voxel structure over the traditional single shell version, constrained spherical deconvolution (CSD). Herein, we explore the possibility of using deep learning on single shell data (using the b=1000 s/mm
from the Human Connectome Project (HCP)) to estimate the information content captured by 8
order MT-CSD using the full three shell data (b=1000, 2000, and 3000 s/mm
from HCP). Briefly, we examine two network architectures: 1.) Sequential network of fully connected dense layers with a residual block in the middle (ResDNN), 2.) Patch based convolutional neural network with a residual block (ResCNN). For both networks an additional output block for estimation of voxel fraction was used with a modified loss function. Each approach was compared against the baseline of using MT-CSD on all data on 15 subjects from the HCP divided into 5 training, 2 validation, and 8 testing subjects with a total of 6.7 million voxels. The fiber orientation distribution function (fODF) can be recovered with high correlation (0.77 vs 0.74 and 0.65) and low root mean squared error ResCNN:0.0124, ResDNN:0.0168 and sCSD:0.0323 as compared to the ground truth of MT-CST, which was derived from the multi-shell DW-MRI acquisitions. The mean squared error between the MT-CSD estimates for white matter tissue fraction and for the predictions are ResCNN:0.0249 vs ResDNN:0.0264. We illustrate the applicability of high definition fiber tractography on a single testing subject with arcuate and corpus callosum Tractography. In summary, the proposed approach provides a promising framework to estimate MT-CSD with limited single shell data. Source code and models have been made publicly available. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0277-786X 1996-756X |
| DOI: | 10.1117/12.2549455 |