Decomposing certain equipartite graphs into t-fold bristled graphs
The t−fold bristled graph(or t−thorny graph) is defined by attaching t pendant vertex to each vertex of a given graph, for any integer t ≥ 1. In this paper, we have shown that, the following equipartite graphs Kn ∗ K¯m,Kn − I ∗ K¯m, Kn + I ∗ K¯m, Km,n* ∗ K¯t and if G be a complete multipartite, G ∗...
Saved in:
Published in | AIP conference proceedings Vol. 2177; no. 1 |
---|---|
Main Author | |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Melville
American Institute of Physics
04.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-243X 1551-7616 |
DOI | 10.1063/1.5135210 |
Cover
Summary: | The t−fold bristled graph(or t−thorny graph) is defined by attaching t pendant vertex to each vertex of a given graph, for any integer t ≥ 1. In this paper, we have shown that, the following equipartite graphs Kn ∗ K¯m,Kn − I ∗ K¯m, Kn + I ∗ K¯m, Km,n* ∗ K¯t and if G be a complete multipartite, G ∗ K¯t−1 to be decomposed into t− fold bristled graphs. |
---|---|
Bibliography: | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.5135210 |