Decomposing certain equipartite graphs into t-fold bristled graphs

The t−fold bristled graph(or t−thorny graph) is defined by attaching t pendant vertex to each vertex of a given graph, for any integer t ≥ 1. In this paper, we have shown that, the following equipartite graphs Kn ∗ K¯m,Kn − I ∗ K¯m, Kn + I ∗ K¯m, Km,n* ∗ K¯t and if G be a complete multipartite, G ∗...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 2177; no. 1
Main Author Kandan, P.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 04.12.2019
Subjects
Online AccessGet full text
ISSN0094-243X
1551-7616
DOI10.1063/1.5135210

Cover

More Information
Summary:The t−fold bristled graph(or t−thorny graph) is defined by attaching t pendant vertex to each vertex of a given graph, for any integer t ≥ 1. In this paper, we have shown that, the following equipartite graphs Kn ∗ K¯m,Kn − I ∗ K¯m, Kn + I ∗ K¯m, Km,n* ∗ K¯t and if G be a complete multipartite, G ∗ K¯t−1 to be decomposed into t− fold bristled graphs.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:0094-243X
1551-7616
DOI:10.1063/1.5135210