Parametric Streaming Two-Stage Submodular Maximization

We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a su...

Full description

Saved in:
Bibliographic Details
Published inTheory and Applications of Models of Computation Vol. 12337; pp. 193 - 204
Main Authors Yang, Ruiqi, Xu, Dachuan, Guo, Longkun, Zhang, Dongmei
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2020
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030592669
9783030592660
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-59267-7_17

Cover

Abstract We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a sublinear size $$\ell $$ , such that the expecting objective value of all utility functions over the summarized subsets has a performance guarantee. We present a generalized one pass, $$\left( \gamma ^5_{\min }/(5+ 2\gamma ^2_{\min } )-O(\epsilon )\right) $$ -approximation, which consumes $$O(\epsilon ^{-1}\ell \log (\ell \gamma _{\min }^{-1}))$$ memory and runs in $$O(\epsilon ^{-1}kmn\log (\ell \gamma _{\min }^{-1}))$$ time, where k, n, m and $$\gamma _{\min }$$ denote the cardinality constraint, the element stream size, the amount of the learned functions, and the minimum generic submodular ratio of the learned functions, respectively.
AbstractList We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a sublinear size $$\ell $$ , such that the expecting objective value of all utility functions over the summarized subsets has a performance guarantee. We present a generalized one pass, $$\left( \gamma ^5_{\min }/(5+ 2\gamma ^2_{\min } )-O(\epsilon )\right) $$ -approximation, which consumes $$O(\epsilon ^{-1}\ell \log (\ell \gamma _{\min }^{-1}))$$ memory and runs in $$O(\epsilon ^{-1}kmn\log (\ell \gamma _{\min }^{-1}))$$ time, where k, n, m and $$\gamma _{\min }$$ denote the cardinality constraint, the element stream size, the amount of the learned functions, and the minimum generic submodular ratio of the learned functions, respectively.
Author Zhang, Dongmei
Guo, Longkun
Yang, Ruiqi
Xu, Dachuan
Author_xml – sequence: 1
  givenname: Ruiqi
  surname: Yang
  fullname: Yang, Ruiqi
– sequence: 2
  givenname: Dachuan
  surname: Xu
  fullname: Xu, Dachuan
– sequence: 3
  givenname: Longkun
  surname: Guo
  fullname: Guo, Longkun
– sequence: 4
  givenname: Dongmei
  surname: Zhang
  fullname: Zhang, Dongmei
  email: zhangdongmei@sdjzu.edu.cn
BookMark eNo1kNtOwzAMhgMMxDb2Blz0BQJxnCbNJZo4SUMgbVxHaZuOwnogzQTi6ck2sCzZ-q3fsr8JGbVd6wi5BHYFjKlrrTKKlCGjqeZSUWVAHZFZlDGKe00dkzFIAIoo9AmZ_A-kHpFx7DnVSuAZmQBnAlIuGZ6T2TC8M8a44DLVckzki_W2ccHXRbIM3tmmbtfJ6qujy2DXLllu86Yrtxvrkyf7XTf1jw11116Q08puBjf7q1Pyene7mj_QxfP94_xmQXsuMFCdI-fAc14yIYUoeYxCSltaKCGTWktdpHnOM6bKmLmFSokCC1VqxKpyOCX8sHfofTzMeZN33cdggJkdJhN5GDTxWbNHYnaYokkcTL3vPrduCMbtXIVrg7eb4s32wfnBSFSQpmggQxMJ4S89pWcG
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2020
Copyright_xml – notice: Springer Nature Switzerland AG 2020
DBID FFUUA
DEWEY 004.0151
DOI 10.1007/978-3-030-59267-7_17
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030592677
3030592677
EISSN 1611-3349
Editor Chen, Jianer
Xu, Jinhui
Feng, Qilong
Editor_xml – sequence: 1
  fullname: Feng, Qilong
– sequence: 2
  fullname: Chen, Jianer
– sequence: 3
  fullname: Xu, Jinhui
EndPage 204
ExternalDocumentID EBC6371553_183_204
GroupedDBID 38.
AABBV
ABTMC
ACGCR
AEDXK
AEHEY
AEJLV
AEJNW
AEKFX
AIYYB
ALMA_UNASSIGNED_HOLDINGS
APEJL
AVCSZ
AZTDL
BBABE
CYNQG
CZZ
DACMV
ESBCR
FFUUA
I4C
IEZ
OAOFD
OPOMJ
SBO
TPJZQ
TSXQS
Z81
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-p243t-9b32212b2d04644d2222c66ada1d1869969c5bb2807d07dba1f74c3c7d933ffe3
ISBN 3030592669
9783030592660
ISSN 0302-9743
IngestDate Tue Jul 29 20:14:54 EDT 2025
Tue Oct 21 02:29:57 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p243t-9b32212b2d04644d2222c66ada1d1869969c5bb2807d07dba1f74c3c7d933ffe3
Notes Original Abstract: We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a sublinear size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, such that the expecting objective value of all utility functions over the summarized subsets has a performance guarantee. We present a generalized one pass, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \gamma ^5_{\min }/(5+ 2\gamma ^2_{\min } )-O(\epsilon )\right) $$\end{document}-approximation, which consumes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\epsilon ^{-1}\ell \log (\ell \gamma _{\min }^{-1}))$$\end{document} memory and runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\epsilon ^{-1}kmn\log (\ell \gamma _{\min }^{-1}))$$\end{document} time, where k, n, m and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\min }$$\end{document} denote the cardinality constraint, the element stream size, the amount of the learned functions, and the minimum generic submodular ratio of the learned functions, respectively.
OCLC 1204152603
PQID EBC6371553_183_204
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_030_59267_7_17
proquest_ebookcentralchapters_6371553_183_204
PublicationCentury 2000
PublicationDate 2020
20201009
PublicationDateYYYYMMDD 2020-01-01
2020-10-09
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 16th International Conference, TAMC 2020, Changsha, China, October 18-20, 2020, Proceedings
PublicationTitle Theory and Applications of Models of Computation
PublicationYear 2020
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002426596
ssj0002792
Score 1.9821467
Snippet We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a...
SourceID springer
proquest
SourceType Publisher
StartPage 193
SubjectTerms Approximation ratio
Streaming algorithm
Submodular maximization
Submodular ratio
Title Parametric Streaming Two-Stage Submodular Maximization
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6371553&ppg=204
http://link.springer.com/10.1007/978-3-030-59267-7_17
Volume 12337
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68oJ44C7GTXngbTJa4jSpH3iYYDBN3YRQh8qT5Vu2CrUBmgjET-BXc44dJ27Zy5CqKLKiXM7nfj4-V0JeMSVTVBtoKTNF81QrqkDNp6nhhzpllVETzEY-Oy9OLvLTxWQxGv2JopbaRr3Wv6_NK_kfVGEMcMUs2Rsg298UBuAc8IUjIAzHHeV328waAEb_OBq-jyIvtItpwfY27sw3bdjytn_pLMSf2uX3ZRhctD7AXV-1w3T50Do76qxeX35t-9HexPwOxld2GU-6jxJjvbDov3N3yxUaIuY_awo67aVFllrVxgW-nslfy1WXA-qZDSsub97MOp_Ged24ULGD0HYisFBspoA9KTrZBzIMZsodQ-dga9va1zKkIQ66w2FEhwy4G3Y_ng6tp-sCizAyX_S0o-CUs2g1z3xz438Wijg2BO5M8WklLUVa7pE9eIExuXV0fDr73NvrUJWZYGnCbpXHwoveQ-XfCvOGwltzX9lp-IooZ_O6R27tbnYc8k7Pmd8jdzD3JcGkFJDffTKy6wfkboAg6SB4SIoB6KQHOumBTgagkxjoR-Ti_fH87QntOnDQb1nOGsoV8H2aqcygBzw3oExmuiikkanBXma84HqiFFZUMvCD_31V5prp0nDGqsqyx2S8rtf2CUmmbCozYw23tsytqqZyWkhdca2wSKhR-4QGGQgXJ9AFJ2v_xRtRsBJ7XAlYgwSguk8OgqAEXr4RoQA3SFgwARIWTsICJfz0Rlc_I7eHKfycjJsfrX0BumejXnbT4i-S9n1u
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Theory+and+Applications+of+Models+of+Computation&rft.au=Yang%2C+Ruiqi&rft.au=Xu%2C+Dachuan&rft.au=Guo%2C+Longkun&rft.au=Zhang%2C+Dongmei&rft.atitle=Parametric+Streaming+Two-Stage+Submodular+Maximization&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2020-10-09&rft.pub=Springer+International+Publishing&rft.isbn=9783030592660&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=193&rft.epage=204&rft_id=info:doi/10.1007%2F978-3-030-59267-7_17
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6371553-l.jpg