Parametric Streaming Two-Stage Submodular Maximization
We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a su...
Saved in:
| Published in | Theory and Applications of Models of Computation Vol. 12337; pp. 193 - 204 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2020
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3030592669 9783030592660 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-030-59267-7_17 |
Cover
| Abstract | We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a sublinear size $$\ell $$ , such that the expecting objective value of all utility functions over the summarized subsets has a performance guarantee. We present a generalized one pass, $$\left( \gamma ^5_{\min }/(5+ 2\gamma ^2_{\min } )-O(\epsilon )\right) $$ -approximation, which consumes $$O(\epsilon ^{-1}\ell \log (\ell \gamma _{\min }^{-1}))$$ memory and runs in $$O(\epsilon ^{-1}kmn\log (\ell \gamma _{\min }^{-1}))$$ time, where k, n, m and $$\gamma _{\min }$$ denote the cardinality constraint, the element stream size, the amount of the learned functions, and the minimum generic submodular ratio of the learned functions, respectively. |
|---|---|
| AbstractList | We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a sublinear size $$\ell $$ , such that the expecting objective value of all utility functions over the summarized subsets has a performance guarantee. We present a generalized one pass, $$\left( \gamma ^5_{\min }/(5+ 2\gamma ^2_{\min } )-O(\epsilon )\right) $$ -approximation, which consumes $$O(\epsilon ^{-1}\ell \log (\ell \gamma _{\min }^{-1}))$$ memory and runs in $$O(\epsilon ^{-1}kmn\log (\ell \gamma _{\min }^{-1}))$$ time, where k, n, m and $$\gamma _{\min }$$ denote the cardinality constraint, the element stream size, the amount of the learned functions, and the minimum generic submodular ratio of the learned functions, respectively. |
| Author | Zhang, Dongmei Guo, Longkun Yang, Ruiqi Xu, Dachuan |
| Author_xml | – sequence: 1 givenname: Ruiqi surname: Yang fullname: Yang, Ruiqi – sequence: 2 givenname: Dachuan surname: Xu fullname: Xu, Dachuan – sequence: 3 givenname: Longkun surname: Guo fullname: Guo, Longkun – sequence: 4 givenname: Dongmei surname: Zhang fullname: Zhang, Dongmei email: zhangdongmei@sdjzu.edu.cn |
| BookMark | eNo1kNtOwzAMhgMMxDb2Blz0BQJxnCbNJZo4SUMgbVxHaZuOwnogzQTi6ck2sCzZ-q3fsr8JGbVd6wi5BHYFjKlrrTKKlCGjqeZSUWVAHZFZlDGKe00dkzFIAIoo9AmZ_A-kHpFx7DnVSuAZmQBnAlIuGZ6T2TC8M8a44DLVckzki_W2ccHXRbIM3tmmbtfJ6qujy2DXLllu86Yrtxvrkyf7XTf1jw11116Q08puBjf7q1Pyene7mj_QxfP94_xmQXsuMFCdI-fAc14yIYUoeYxCSltaKCGTWktdpHnOM6bKmLmFSokCC1VqxKpyOCX8sHfofTzMeZN33cdggJkdJhN5GDTxWbNHYnaYokkcTL3vPrduCMbtXIVrg7eb4s32wfnBSFSQpmggQxMJ4S89pWcG |
| ContentType | Book Chapter |
| Copyright | Springer Nature Switzerland AG 2020 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2020 |
| DBID | FFUUA |
| DEWEY | 004.0151 |
| DOI | 10.1007/978-3-030-59267-7_17 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9783030592677 3030592677 |
| EISSN | 1611-3349 |
| Editor | Chen, Jianer Xu, Jinhui Feng, Qilong |
| Editor_xml | – sequence: 1 fullname: Feng, Qilong – sequence: 2 fullname: Chen, Jianer – sequence: 3 fullname: Xu, Jinhui |
| EndPage | 204 |
| ExternalDocumentID | EBC6371553_183_204 |
| GroupedDBID | 38. AABBV ABTMC ACGCR AEDXK AEHEY AEJLV AEJNW AEKFX AIYYB ALMA_UNASSIGNED_HOLDINGS APEJL AVCSZ AZTDL BBABE CYNQG CZZ DACMV ESBCR FFUUA I4C IEZ OAOFD OPOMJ SBO TPJZQ TSXQS Z81 Z83 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS LDH P2P RSU ~02 |
| ID | FETCH-LOGICAL-p243t-9b32212b2d04644d2222c66ada1d1869969c5bb2807d07dba1f74c3c7d933ffe3 |
| ISBN | 3030592669 9783030592660 |
| ISSN | 0302-9743 |
| IngestDate | Tue Jul 29 20:14:54 EDT 2025 Tue Oct 21 02:29:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCallNum | QA76.9.A43 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p243t-9b32212b2d04644d2222c66ada1d1869969c5bb2807d07dba1f74c3c7d933ffe3 |
| Notes | Original Abstract: We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a sublinear size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, such that the expecting objective value of all utility functions over the summarized subsets has a performance guarantee. We present a generalized one pass, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \gamma ^5_{\min }/(5+ 2\gamma ^2_{\min } )-O(\epsilon )\right) $$\end{document}-approximation, which consumes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\epsilon ^{-1}\ell \log (\ell \gamma _{\min }^{-1}))$$\end{document} memory and runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\epsilon ^{-1}kmn\log (\ell \gamma _{\min }^{-1}))$$\end{document} time, where k, n, m and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\min }$$\end{document} denote the cardinality constraint, the element stream size, the amount of the learned functions, and the minimum generic submodular ratio of the learned functions, respectively. |
| OCLC | 1204152603 |
| PQID | EBC6371553_183_204 |
| PageCount | 12 |
| ParticipantIDs | springer_books_10_1007_978_3_030_59267_7_17 proquest_ebookcentralchapters_6371553_183_204 |
| PublicationCentury | 2000 |
| PublicationDate | 2020 20201009 |
| PublicationDateYYYYMMDD | 2020-01-01 2020-10-09 |
| PublicationDate_xml | – year: 2020 text: 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | 16th International Conference, TAMC 2020, Changsha, China, October 18-20, 2020, Proceedings |
| PublicationTitle | Theory and Applications of Models of Computation |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
| RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
| SSID | ssj0002426596 ssj0002792 |
| Score | 1.9821467 |
| Snippet | We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a... |
| SourceID | springer proquest |
| SourceType | Publisher |
| StartPage | 193 |
| SubjectTerms | Approximation ratio Streaming algorithm Submodular maximization Submodular ratio |
| Title | Parametric Streaming Two-Stage Submodular Maximization |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6371553&ppg=204 http://link.springer.com/10.1007/978-3-030-59267-7_17 |
| Volume | 12337 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68oJ44C7GTXngbTJa4jSpH3iYYDBN3YRQh8qT5Vu2CrUBmgjET-BXc44dJ27Zy5CqKLKiXM7nfj4-V0JeMSVTVBtoKTNF81QrqkDNp6nhhzpllVETzEY-Oy9OLvLTxWQxGv2JopbaRr3Wv6_NK_kfVGEMcMUs2Rsg298UBuAc8IUjIAzHHeV328waAEb_OBq-jyIvtItpwfY27sw3bdjytn_pLMSf2uX3ZRhctD7AXV-1w3T50Do76qxeX35t-9HexPwOxld2GU-6jxJjvbDov3N3yxUaIuY_awo67aVFllrVxgW-nslfy1WXA-qZDSsub97MOp_Ged24ULGD0HYisFBspoA9KTrZBzIMZsodQ-dga9va1zKkIQ66w2FEhwy4G3Y_ng6tp-sCizAyX_S0o-CUs2g1z3xz438Wijg2BO5M8WklLUVa7pE9eIExuXV0fDr73NvrUJWZYGnCbpXHwoveQ-XfCvOGwltzX9lp-IooZ_O6R27tbnYc8k7Pmd8jdzD3JcGkFJDffTKy6wfkboAg6SB4SIoB6KQHOumBTgagkxjoR-Ti_fH87QntOnDQb1nOGsoV8H2aqcygBzw3oExmuiikkanBXma84HqiFFZUMvCD_31V5prp0nDGqsqyx2S8rtf2CUmmbCozYw23tsytqqZyWkhdca2wSKhR-4QGGQgXJ9AFJ2v_xRtRsBJ7XAlYgwSguk8OgqAEXr4RoQA3SFgwARIWTsICJfz0Rlc_I7eHKfycjJsfrX0BumejXnbT4i-S9n1u |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Theory+and+Applications+of+Models+of+Computation&rft.au=Yang%2C+Ruiqi&rft.au=Xu%2C+Dachuan&rft.au=Guo%2C+Longkun&rft.au=Zhang%2C+Dongmei&rft.atitle=Parametric+Streaming+Two-Stage+Submodular+Maximization&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2020-10-09&rft.pub=Springer+International+Publishing&rft.isbn=9783030592660&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=193&rft.epage=204&rft_id=info:doi/10.1007%2F978-3-030-59267-7_17 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6371553-l.jpg |