Parametric Streaming Two-Stage Submodular Maximization

We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a su...

Full description

Saved in:
Bibliographic Details
Published inTheory and Applications of Models of Computation Vol. 12337; pp. 193 - 204
Main Authors Yang, Ruiqi, Xu, Dachuan, Guo, Longkun, Zhang, Dongmei
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2020
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030592669
9783030592660
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-59267-7_17

Cover

More Information
Summary:We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a sublinear size $$\ell $$ , such that the expecting objective value of all utility functions over the summarized subsets has a performance guarantee. We present a generalized one pass, $$\left( \gamma ^5_{\min }/(5+ 2\gamma ^2_{\min } )-O(\epsilon )\right) $$ -approximation, which consumes $$O(\epsilon ^{-1}\ell \log (\ell \gamma _{\min }^{-1}))$$ memory and runs in $$O(\epsilon ^{-1}kmn\log (\ell \gamma _{\min }^{-1}))$$ time, where k, n, m and $$\gamma _{\min }$$ denote the cardinality constraint, the element stream size, the amount of the learned functions, and the minimum generic submodular ratio of the learned functions, respectively.
Bibliography:Original Abstract: We study the submodular maximization problem in generalized streaming setting using a two-stage policy. In the streaming context, elements are released in a fashion that an element is revealed at one time. Subject to a limited memory capacity, the problem aims to sieve a subset of elements with a sublinear size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}, such that the expecting objective value of all utility functions over the summarized subsets has a performance guarantee. We present a generalized one pass, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \gamma ^5_{\min }/(5+ 2\gamma ^2_{\min } )-O(\epsilon )\right) $$\end{document}-approximation, which consumes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\epsilon ^{-1}\ell \log (\ell \gamma _{\min }^{-1}))$$\end{document} memory and runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\epsilon ^{-1}kmn\log (\ell \gamma _{\min }^{-1}))$$\end{document} time, where k, n, m and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{\min }$$\end{document} denote the cardinality constraint, the element stream size, the amount of the learned functions, and the minimum generic submodular ratio of the learned functions, respectively.
ISBN:3030592669
9783030592660
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-59267-7_17