On the Compatibility Between the Minimalist Foundation and Constructive Set Theory

The Minimalist Foundation MF $$\mathbf {MF}$$ was ideated by M.E. Maietti and G. Sambin and then completed as a formal system by M.E. Maietti in order to provide a foundation for constructive mathematics compatible with the main classical and intuitionistic, predicative and impredicative, foundation...

Full description

Saved in:
Bibliographic Details
Published inRevolutions and Revelations in Computability Vol. 13359; pp. 172 - 185
Main Authors Maschio, Samuele, Sabelli, Pietro
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN3031087399
9783031087394
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-08740-0_15

Cover

More Information
Summary:The Minimalist Foundation MF $$\mathbf {MF}$$ was ideated by M.E. Maietti and G. Sambin and then completed as a formal system by M.E. Maietti in order to provide a foundation for constructive mathematics compatible with the main classical and intuitionistic, predicative and impredicative, foundational theories. Here we show that MF $$\mathbf {MF}$$ is in fact compatible with Aczel’s constructive set theory CZF $$\mathbf {CZF}$$ . We prove this by extending the extensional level of MF $$\mathbf {MF}$$ with rules obtaining a system which turns out to be equivalent to CZF $$\mathbf {CZF}$$ .
Bibliography:Original Abstract: The Minimalist Foundation MF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {MF}$$\end{document} was ideated by M.E. Maietti and G. Sambin and then completed as a formal system by M.E. Maietti in order to provide a foundation for constructive mathematics compatible with the main classical and intuitionistic, predicative and impredicative, foundational theories. Here we show that MF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {MF}$$\end{document} is in fact compatible with Aczel’s constructive set theory CZF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {CZF}$$\end{document}. We prove this by extending the extensional level of MF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {MF}$$\end{document} with rules obtaining a system which turns out to be equivalent to CZF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {CZF}$$\end{document}.
ISBN:3031087399
9783031087394
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-08740-0_15