Optimal Matroid Bases with Intersection Constraints: Valuated Matroids, M-convex Functions, and Their Applications
For two matroids $$M_1$$ and $$M_2$$ with the same ground set V and two cost functions $$w_1$$ and $$w_2$$ on $$2^V$$ , we consider the problem of finding bases $$X_1$$ of $$M_1$$ and $$X_2$$ of $$M_2$$ minimizing $$w_1(X_1)+w_2(X_2)$$ subject to a certain cardinality constraint on their intersectio...
        Saved in:
      
    
          | Published in | Theory and Applications of Models of Computation Vol. 12337; pp. 156 - 167 | 
|---|---|
| Main Authors | , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Switzerland
          Springer International Publishing AG
    
        2020
     Springer International Publishing  | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 3030592669 9783030592660  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-030-59267-7_14 | 
Cover
| Summary: | For two matroids $$M_1$$ and $$M_2$$ with the same ground set V and two cost functions $$w_1$$ and $$w_2$$ on $$2^V$$ , we consider the problem of finding bases $$X_1$$ of $$M_1$$ and $$X_2$$ of $$M_2$$ minimizing $$w_1(X_1)+w_2(X_2)$$ subject to a certain cardinality constraint on their intersection $$X_1 \cap X_2$$ . Lendl, Peis, and Timmermans (2019) discussed modular cost functions: They reduced the problem to weighted matroid intersection for the case where the cardinality constraint is $$|X_1 \cap X_2|\le k$$ or $$|X_1 \cap X_2|\ge k$$ ; and designed a new primal-dual algorithm for the case where $$|X_1 \cap X_2|=k$$ . The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or $$\mathrm {M}$$ -convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in matroid congestion games and combinatorial optimization problems with interaction costs. | 
|---|---|
| Bibliography: | The first author was supported by JSPS KAKENHI Grant Number JP19J01302, Japan. The second author was supported by JSPS KAKENHI Grant Numbers JP16K16012, JP26280004, Japan. Original Abstract: For two matroids \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_2$$\end{document} with the same ground set V and two cost functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_2$$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^V$$\end{document}, we consider the problem of finding bases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_1$$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_2$$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_2$$\end{document} minimizing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_1(X_1)+w_2(X_2)$$\end{document} subject to a certain cardinality constraint on their intersection \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_1 \cap X_2$$\end{document}. Lendl, Peis, and Timmermans (2019) discussed modular cost functions: They reduced the problem to weighted matroid intersection for the case where the cardinality constraint is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X_1 \cap X_2|\le k$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X_1 \cap X_2|\ge k$$\end{document}; and designed a new primal-dual algorithm for the case where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X_1 \cap X_2|=k$$\end{document}. The aim of this paper is to generalize the problems to have nonlinear convex cost functions, and to comprehend them from the viewpoint of discrete convex analysis. We prove that each generalized problem can be solved via valuated independent assignment, valuated matroid intersection, or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {M}$$\end{document}-convex submodular flow, to offer a comprehensive understanding of weighted matroid intersection with intersection constraints. We also show the NP-hardness of some variants of these problems, which clarifies the coverage of discrete convex analysis for those problems. Finally, we present applications of our generalized problems in matroid congestion games and combinatorial optimization problems with interaction costs.  | 
| ISBN: | 3030592669 9783030592660  | 
| ISSN: | 0302-9743 1611-3349  | 
| DOI: | 10.1007/978-3-030-59267-7_14 |