Contrastive Pretraining for Echocardiography Segmentation with Limited Data

Contrastive learning has proven useful in many applications where access to labelled data is limited. The lack of annotated data is particularly problematic in medical image segmentation as it is difficult to have clinical experts manually annotate large volumes of data such as cardiac structures in...

Full description

Saved in:
Bibliographic Details
Published inMedical Image Understanding and Analysis Vol. 13413; pp. 680 - 691
Main Authors Saeed, Mohamed, Muhtaseb, Rand, Yaqub, Mohammad
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031120527
3031120523
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-12053-4_50

Cover

More Information
Summary:Contrastive learning has proven useful in many applications where access to labelled data is limited. The lack of annotated data is particularly problematic in medical image segmentation as it is difficult to have clinical experts manually annotate large volumes of data such as cardiac structures in ultrasound images of the heart. In this paper, We propose a self supervised contrastive learning method to segment the left ventricle from echocardiography when limited annotated images exist. Furthermore, we study the effect of contrastive pretraining on two well-known segmentation networks, UNet and DeepLabV3. Our results show that contrastive pretraining helps improve the performance on left ventricle segmentation, particularly when annotated data is scarce. We show how to achieve comparable results to state-of-the-art fully supervised algorithms when we train our models in a self-supervised fashion followed by fine-tuning on just 5% of the data. We show that our solution outperforms what is currently published on a large public dataset (EchoNet-Dynamic) achieving a Dice score of 0.9252. We also compare the performance of our solution on another smaller dataset (CAMUS) to demonstrate the generalizability of our proposed solution. The code is available at (https://github.com/BioMedIA-MBZUAI/contrastive-echo).
Bibliography:M. Saeed and R. Muhtaseb—Contributed equally.
ISBN:9783031120527
3031120523
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-12053-4_50