Approximating BP Maximization with Distorted-Based Strategy

We study a problem of maximizing the sum of a suBmodular and suPermodular (BP) function, denoted as maxS⊆V,|S|≤kG(S)+L(S) $$\max _{\mathcal {S}\subseteq \mathcal {V}, |\mathcal {S}|\le k}\mathcal {G}(\mathcal {S})+\mathcal {L}(\mathcal {S})$$ , where G(·) $$\mathcal {G}(\cdot )$$ is non-negative mon...

Full description

Saved in:
Bibliographic Details
Published inParallel and Distributed Computing, Applications and Technologies Vol. 13148; pp. 452 - 459
Main Authors Yang, Ruiqi, Gao, Suixiang, Han, Lu, Li, Gaidi, Zhao, Zhongrui
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030967710
3030967719
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-96772-7_41

Cover

More Information
Summary:We study a problem of maximizing the sum of a suBmodular and suPermodular (BP) function, denoted as maxS⊆V,|S|≤kG(S)+L(S) $$\max _{\mathcal {S}\subseteq \mathcal {V}, |\mathcal {S}|\le k}\mathcal {G}(\mathcal {S})+\mathcal {L}(\mathcal {S})$$ , where G(·) $$\mathcal {G}(\cdot )$$ is non-negative monotonic and submodular, L(·) $$\mathcal {L}(\cdot )$$ is monotonic and supermodular. In this paper, we consider the K $$\mathcal {K}$$ -cardinality constrained BP maximization under a streaming setting. Denote κ $$\kappa $$ as the supermodular curvature of L $$\mathcal {L}$$ . Utilizing a distorted threshold-based technique, we present a first (1-κ)/(2-κ) $$(1-\kappa )/(2-\kappa )$$ -approximation semi-streaming algorithm and then implement it by lazily guessing the optimum threshold and yield a one pass, O(ε-1log((2-κ)K/(1-κ)2)) $$\mathcal {O}(\varepsilon ^{-1}\log ((2-\kappa )\mathcal {K}/(1-\kappa )^2))$$ memory complexity, ((1-κ)/(2-κ)-O(ε)) $$((1-\kappa )/(2-\kappa )-\mathcal {O}(\varepsilon ))$$ -approximation. We further study the BP maximization with fairness constrains and develop a distorted greedy-based algorithm, which gets a (1-κ)/(2-κ) $$(1-\kappa )/(2-\kappa )$$ -approximation for the extended fair BP maximization.
Bibliography:Original Abstract: We study a problem of maximizing the sum of a suBmodular and suPermodular (BP) function, denoted as maxS⊆V,|S|≤kG(S)+L(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{\mathcal {S}\subseteq \mathcal {V}, |\mathcal {S}|\le k}\mathcal {G}(\mathcal {S})+\mathcal {L}(\mathcal {S})$$\end{document}, where G(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}(\cdot )$$\end{document} is non-negative monotonic and submodular, L(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(\cdot )$$\end{document} is monotonic and supermodular. In this paper, we consider the K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}$$\end{document}-cardinality constrained BP maximization under a streaming setting. Denote κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} as the supermodular curvature of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}. Utilizing a distorted threshold-based technique, we present a first (1-κ)/(2-κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\kappa )/(2-\kappa )$$\end{document}-approximation semi-streaming algorithm and then implement it by lazily guessing the optimum threshold and yield a one pass, O(ε-1log((2-κ)K/(1-κ)2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\varepsilon ^{-1}\log ((2-\kappa )\mathcal {K}/(1-\kappa )^2))$$\end{document} memory complexity, ((1-κ)/(2-κ)-O(ε))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$((1-\kappa )/(2-\kappa )-\mathcal {O}(\varepsilon ))$$\end{document}-approximation. We further study the BP maximization with fairness constrains and develop a distorted greedy-based algorithm, which gets a (1-κ)/(2-κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\kappa )/(2-\kappa )$$\end{document}-approximation for the extended fair BP maximization.
ISBN:9783030967710
3030967719
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-96772-7_41