Approximating BP Maximization with Distorted-Based Strategy
We study a problem of maximizing the sum of a suBmodular and suPermodular (BP) function, denoted as maxS⊆V,|S|≤kG(S)+L(S) $$\max _{\mathcal {S}\subseteq \mathcal {V}, |\mathcal {S}|\le k}\mathcal {G}(\mathcal {S})+\mathcal {L}(\mathcal {S})$$ , where G(·) $$\mathcal {G}(\cdot )$$ is non-negative mon...
Saved in:
| Published in | Parallel and Distributed Computing, Applications and Technologies Vol. 13148; pp. 452 - 459 |
|---|---|
| Main Authors | , , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2022
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783030967710 3030967719 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-030-96772-7_41 |
Cover
| Summary: | We study a problem of maximizing the sum of a suBmodular and suPermodular (BP) function, denoted as maxS⊆V,|S|≤kG(S)+L(S) $$\max _{\mathcal {S}\subseteq \mathcal {V}, |\mathcal {S}|\le k}\mathcal {G}(\mathcal {S})+\mathcal {L}(\mathcal {S})$$ , where G(·) $$\mathcal {G}(\cdot )$$ is non-negative monotonic and submodular, L(·) $$\mathcal {L}(\cdot )$$ is monotonic and supermodular. In this paper, we consider the K $$\mathcal {K}$$ -cardinality constrained BP maximization under a streaming setting. Denote κ $$\kappa $$ as the supermodular curvature of L $$\mathcal {L}$$ . Utilizing a distorted threshold-based technique, we present a first (1-κ)/(2-κ) $$(1-\kappa )/(2-\kappa )$$ -approximation semi-streaming algorithm and then implement it by lazily guessing the optimum threshold and yield a one pass, O(ε-1log((2-κ)K/(1-κ)2)) $$\mathcal {O}(\varepsilon ^{-1}\log ((2-\kappa )\mathcal {K}/(1-\kappa )^2))$$ memory complexity, ((1-κ)/(2-κ)-O(ε)) $$((1-\kappa )/(2-\kappa )-\mathcal {O}(\varepsilon ))$$ -approximation. We further study the BP maximization with fairness constrains and develop a distorted greedy-based algorithm, which gets a (1-κ)/(2-κ) $$(1-\kappa )/(2-\kappa )$$ -approximation for the extended fair BP maximization. |
|---|---|
| Bibliography: | Original Abstract: We study a problem of maximizing the sum of a suBmodular and suPermodular (BP) function, denoted as maxS⊆V,|S|≤kG(S)+L(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{\mathcal {S}\subseteq \mathcal {V}, |\mathcal {S}|\le k}\mathcal {G}(\mathcal {S})+\mathcal {L}(\mathcal {S})$$\end{document}, where G(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}(\cdot )$$\end{document} is non-negative monotonic and submodular, L(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(\cdot )$$\end{document} is monotonic and supermodular. In this paper, we consider the K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}$$\end{document}-cardinality constrained BP maximization under a streaming setting. Denote κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} as the supermodular curvature of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}. Utilizing a distorted threshold-based technique, we present a first (1-κ)/(2-κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\kappa )/(2-\kappa )$$\end{document}-approximation semi-streaming algorithm and then implement it by lazily guessing the optimum threshold and yield a one pass, O(ε-1log((2-κ)K/(1-κ)2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\varepsilon ^{-1}\log ((2-\kappa )\mathcal {K}/(1-\kappa )^2))$$\end{document} memory complexity, ((1-κ)/(2-κ)-O(ε))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$((1-\kappa )/(2-\kappa )-\mathcal {O}(\varepsilon ))$$\end{document}-approximation. We further study the BP maximization with fairness constrains and develop a distorted greedy-based algorithm, which gets a (1-κ)/(2-κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\kappa )/(2-\kappa )$$\end{document}-approximation for the extended fair BP maximization. |
| ISBN: | 9783030967710 3030967719 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-030-96772-7_41 |