Proof Complexity of Monotone Branching Programs
We investigate the proof complexity of systems based on positive branching programs, i.e. non-deterministic branching programs (NBPs) where, for any 0-transition between two nodes, there is also a 1-transition. Positive NBPs compute monotone Boolean functions, like negation-free circuits or formulas...
Saved in:
| Published in | Revolutions and Revelations in Computability Vol. 13359; pp. 74 - 87 |
|---|---|
| Main Authors | , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2022
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3031087399 9783031087394 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-031-08740-0_7 |
Cover
| Summary: | We investigate the proof complexity of systems based on positive branching programs, i.e. non-deterministic branching programs (NBPs) where, for any 0-transition between two nodes, there is also a 1-transition. Positive NBPs compute monotone Boolean functions, like negation-free circuits or formulas, but constitute a positive version of (non-uniform) NL $$\mathbf {N}\mathbf {L}$$ , rather than P $$\mathbf {P}$$ or NC1 $$\mathbf {NC}^{1}$$ , respectively.
The proof complexity of NBPs was investigated in previous work by Buss, Das and Knop, using extension variables to represent the dag-structure, over a language of (non-deterministic) decision trees, yielding the system eLNDT $$\mathsf {e}\mathsf {LNDT}$$ . Our system eLNDT+ $$\mathsf {e}\mathsf {LNDT}^{+}$$ is obtained by restricting their systems to a positive syntax, similarly to how the ‘monotone sequent calculus’ MLK $$\mathsf {MLK}$$ is obtained from the usual sequent calculus LK $$\mathsf {LK}$$ by restricting to negation-free formulas.
Our main result is that eLNDT+ $$\mathsf {e}\mathsf {LNDT}^{+}$$ polynomially simulates eLNDT $$\mathsf {e}\mathsf {LNDT}$$ over positive sequents. Our proof method is inspired by a similar result for MLK $$\mathsf {MLK}$$ by Atserias, Galesi and Pudlák, that was recently improved to a bona fide polynomial simulation via works of Jeřábek and Buss, Kabanets, Kolokolova and Koucký. Along the way we formalise several properties of counting functions within eLNDT+ $$\mathsf {e}\mathsf {LNDT}^{+}$$ by polynomial-size proofs and, as a case study, give explicit polynomial-size poofs of the propositional pigeonhole principle. |
|---|---|
| Bibliography: | Original Abstract: We investigate the proof complexity of systems based on positive branching programs, i.e. non-deterministic branching programs (NBPs) where, for any 0-transition between two nodes, there is also a 1-transition. Positive NBPs compute monotone Boolean functions, like negation-free circuits or formulas, but constitute a positive version of (non-uniform) NL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {N}\mathbf {L}$$\end{document}, rather than P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {P}$$\end{document} or NC1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {NC}^{1}$$\end{document}, respectively. The proof complexity of NBPs was investigated in previous work by Buss, Das and Knop, using extension variables to represent the dag-structure, over a language of (non-deterministic) decision trees, yielding the system eLNDT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {e}\mathsf {LNDT}$$\end{document}. Our system eLNDT+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {e}\mathsf {LNDT}^{+}$$\end{document} is obtained by restricting their systems to a positive syntax, similarly to how the ‘monotone sequent calculus’ MLK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {MLK}$$\end{document} is obtained from the usual sequent calculus LK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {LK}$$\end{document} by restricting to negation-free formulas. Our main result is that eLNDT+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {e}\mathsf {LNDT}^{+}$$\end{document} polynomially simulates eLNDT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {e}\mathsf {LNDT}$$\end{document} over positive sequents. Our proof method is inspired by a similar result for MLK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {MLK}$$\end{document} by Atserias, Galesi and Pudlák, that was recently improved to a bona fide polynomial simulation via works of Jeřábek and Buss, Kabanets, Kolokolova and Koucký. Along the way we formalise several properties of counting functions within eLNDT+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {e}\mathsf {LNDT}^{+}$$\end{document} by polynomial-size proofs and, as a case study, give explicit polynomial-size poofs of the propositional pigeonhole principle. |
| ISBN: | 3031087399 9783031087394 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-031-08740-0_7 |