Proof Complexity of Monotone Branching Programs

We investigate the proof complexity of systems based on positive branching programs, i.e. non-deterministic branching programs (NBPs) where, for any 0-transition between two nodes, there is also a 1-transition. Positive NBPs compute monotone Boolean functions, like negation-free circuits or formulas...

Full description

Saved in:
Bibliographic Details
Published inRevolutions and Revelations in Computability Vol. 13359; pp. 74 - 87
Main Authors Das, Anupam, Delkos, Avgerinos
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3031087399
9783031087394
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-08740-0_7

Cover

More Information
Summary:We investigate the proof complexity of systems based on positive branching programs, i.e. non-deterministic branching programs (NBPs) where, for any 0-transition between two nodes, there is also a 1-transition. Positive NBPs compute monotone Boolean functions, like negation-free circuits or formulas, but constitute a positive version of (non-uniform) NL $$\mathbf {N}\mathbf {L}$$ , rather than P $$\mathbf {P}$$ or NC1 $$\mathbf {NC}^{1}$$ , respectively. The proof complexity of NBPs was investigated in previous work by Buss, Das and Knop, using extension variables to represent the dag-structure, over a language of (non-deterministic) decision trees, yielding the system eLNDT $$\mathsf {e}\mathsf {LNDT}$$ . Our system eLNDT+ $$\mathsf {e}\mathsf {LNDT}^{+}$$ is obtained by restricting their systems to a positive syntax, similarly to how the ‘monotone sequent calculus’ MLK $$\mathsf {MLK}$$ is obtained from the usual sequent calculus LK $$\mathsf {LK}$$ by restricting to negation-free formulas. Our main result is that eLNDT+ $$\mathsf {e}\mathsf {LNDT}^{+}$$ polynomially simulates eLNDT $$\mathsf {e}\mathsf {LNDT}$$ over positive sequents. Our proof method is inspired by a similar result for MLK $$\mathsf {MLK}$$ by Atserias, Galesi and Pudlák, that was recently improved to a bona fide polynomial simulation via works of Jeřábek and Buss, Kabanets, Kolokolova and Koucký. Along the way we formalise several properties of counting functions within eLNDT+ $$\mathsf {e}\mathsf {LNDT}^{+}$$ by polynomial-size proofs and, as a case study, give explicit polynomial-size poofs of the propositional pigeonhole principle.
Bibliography:Original Abstract: We investigate the proof complexity of systems based on positive branching programs, i.e. non-deterministic branching programs (NBPs) where, for any 0-transition between two nodes, there is also a 1-transition. Positive NBPs compute monotone Boolean functions, like negation-free circuits or formulas, but constitute a positive version of (non-uniform) NL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {N}\mathbf {L}$$\end{document}, rather than P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {P}$$\end{document} or NC1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {NC}^{1}$$\end{document}, respectively. The proof complexity of NBPs was investigated in previous work by Buss, Das and Knop, using extension variables to represent the dag-structure, over a language of (non-deterministic) decision trees, yielding the system eLNDT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {e}\mathsf {LNDT}$$\end{document}. Our system eLNDT+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {e}\mathsf {LNDT}^{+}$$\end{document} is obtained by restricting their systems to a positive syntax, similarly to how the ‘monotone sequent calculus’ MLK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {MLK}$$\end{document} is obtained from the usual sequent calculus LK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {LK}$$\end{document} by restricting to negation-free formulas. Our main result is that eLNDT+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {e}\mathsf {LNDT}^{+}$$\end{document} polynomially simulates eLNDT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {e}\mathsf {LNDT}$$\end{document} over positive sequents. Our proof method is inspired by a similar result for MLK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {MLK}$$\end{document} by Atserias, Galesi and Pudlák, that was recently improved to a bona fide polynomial simulation via works of Jeřábek and Buss, Kabanets, Kolokolova and Koucký. Along the way we formalise several properties of counting functions within eLNDT+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {e}\mathsf {LNDT}^{+}$$\end{document} by polynomial-size proofs and, as a case study, give explicit polynomial-size poofs of the propositional pigeonhole principle.
ISBN:3031087399
9783031087394
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-08740-0_7