Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model of Atomic Nuclei

We developed a symbolic–numeric algorithm involving a set of effective symbolic and numerical procedures for calculations of low lying energy spectra and eigenfunctions of atomic nuclei. The eigenfunctions are expanded over the orthonormal noncanonical U(5)⊃O(5)⊃O(3) $$U(5) {\supset } O(5) {\supset...

Full description

Saved in:
Bibliographic Details
Published inComputer Algebra in Scientific Computing Vol. 13366; pp. 103 - 123
Main Authors Deveikis, Algirdas, Gusev, Alexander A., Vinitsky, Sergue I., Blinkov, Yuri A., Góźdź, Andrzej, Pȩdrak, Aleksandra, Hess, Peter O.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031147876
3031147871
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-14788-3_7

Cover

More Information
Summary:We developed a symbolic–numeric algorithm involving a set of effective symbolic and numerical procedures for calculations of low lying energy spectra and eigenfunctions of atomic nuclei. The eigenfunctions are expanded over the orthonormal noncanonical U(5)⊃O(5)⊃O(3) $$U(5) {\supset } O(5) {\supset } O(3)$$ basis in Geometric Collective Model. We give implementation of the algorithm and procedures in Wolfram Mathematica. We present benchmark calculations of energy spectrum, quadrupole moment and the reduced upwards transition probability B(E2) for the nucleus 186 $$^{186}$$ Os.
Bibliography:Original Abstract: We developed a symbolic–numeric algorithm involving a set of effective symbolic and numerical procedures for calculations of low lying energy spectra and eigenfunctions of atomic nuclei. The eigenfunctions are expanded over the orthonormal noncanonical U(5)⊃O(5)⊃O(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(5) {\supset } O(5) {\supset } O(3)$$\end{document} basis in Geometric Collective Model. We give implementation of the algorithm and procedures in Wolfram Mathematica. We present benchmark calculations of energy spectrum, quadrupole moment and the reduced upwards transition probability B(E2) for the nucleus 186\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{186}$$\end{document}Os.
ISBN:9783031147876
3031147871
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-14788-3_7