Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model of Atomic Nuclei
We developed a symbolic–numeric algorithm involving a set of effective symbolic and numerical procedures for calculations of low lying energy spectra and eigenfunctions of atomic nuclei. The eigenfunctions are expanded over the orthonormal noncanonical U(5)⊃O(5)⊃O(3) $$U(5) {\supset } O(5) {\supset...
        Saved in:
      
    
          | Published in | Computer Algebra in Scientific Computing Vol. 13366; pp. 103 - 123 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Switzerland
          Springer International Publishing AG
    
        2022
     Springer International Publishing  | 
| Series | Lecture Notes in Computer Science | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9783031147876 3031147871  | 
| ISSN | 0302-9743 1611-3349  | 
| DOI | 10.1007/978-3-031-14788-3_7 | 
Cover
| Summary: | We developed a symbolic–numeric algorithm involving a set of effective symbolic and numerical procedures for calculations of low lying energy spectra and eigenfunctions of atomic nuclei. The eigenfunctions are expanded over the orthonormal noncanonical U(5)⊃O(5)⊃O(3) $$U(5) {\supset } O(5) {\supset } O(3)$$ basis in Geometric Collective Model. We give implementation of the algorithm and procedures in Wolfram Mathematica. We present benchmark calculations of energy spectrum, quadrupole moment and the reduced upwards transition probability B(E2) for the nucleus 186 $$^{186}$$ Os. | 
|---|---|
| Bibliography: | Original Abstract: We developed a symbolic–numeric algorithm involving a set of effective symbolic and numerical procedures for calculations of low lying energy spectra and eigenfunctions of atomic nuclei. The eigenfunctions are expanded over the orthonormal noncanonical U(5)⊃O(5)⊃O(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(5) {\supset } O(5) {\supset } O(3)$$\end{document} basis in Geometric Collective Model. We give implementation of the algorithm and procedures in Wolfram Mathematica. We present benchmark calculations of energy spectrum, quadrupole moment and the reduced upwards transition probability B(E2) for the nucleus 186\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{186}$$\end{document}Os. | 
| ISBN: | 9783031147876 3031147871  | 
| ISSN: | 0302-9743 1611-3349  | 
| DOI: | 10.1007/978-3-031-14788-3_7 |