Constructing Three Completely Independent Spanning Trees in Locally Twisted Cubes

For the underlying graph G of a network, k spanning trees of G are called completely independent spanning trees (CISTs for short) if they are mutually inner-node-disjoint. It has been known that determining the existence of k CISTs in a graph is an NP-hard problem, even for k=2 $$k=2$$ . Accordingly...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Algorithmics Vol. 11458; pp. 88 - 99
Main Authors Pai, Kung-Jui, Chang, Ruay-Shiung, Chang, Jou-Ming, Wu, Ro-Yu
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3030181251
9783030181253
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-18126-0_8

Cover

More Information
Summary:For the underlying graph G of a network, k spanning trees of G are called completely independent spanning trees (CISTs for short) if they are mutually inner-node-disjoint. It has been known that determining the existence of k CISTs in a graph is an NP-hard problem, even for k=2 $$k=2$$ . Accordingly, researches focused on the problem of constructing multiple CISTs in some famous networks. Pai and Chang [28] proposed a unified approach to recursively construct two CISTs with diameter 2n-1 $$2n-1$$ in several n-dimensional hypercube-variant networks for n⩾4 $$n\geqslant 4$$ , including locally twisted cubes LTQn $$LTQ_n$$ . Later on, they provided a new construction for LTQn $$LTQ_n$$ and showed that the diameter of two CISTs can be reduced to 2n-2 $$2n-2$$ if n=4 $$n=4$$ (and thus is optimal) and 2n-3 $$2n-3$$ if n⩾5 $$n\geqslant 5$$ . In this paper, we intend to construct more CISTs of LTQn $$LTQ_n$$ . We develop a novel tree searching algorithm, called two-stages tree-searching algorithm, to construct three CISTs of LTQ6 $$LTQ_6$$ and show that the three CISTs of the high-dimensional LTQn $$LTQ_n$$ for n⩾7 $$n\geqslant 7$$ can be constructed by recursion. The diameters of three CISTs for LTQn $$LTQ_n$$ we constructed are 9, 12 and 14 when n=6 $$n=6$$ , and are 2n-3 $$2n-3$$ , 2n-1 $$2n-1$$ and 2n+1 $$2n+1$$ when n⩾7 $$n\geqslant 7$$ .
Bibliography:Original Abstract: For the underlying graph G of a network, k spanning trees of G are called completely independent spanning trees (CISTs for short) if they are mutually inner-node-disjoint. It has been known that determining the existence of k CISTs in a graph is an NP-hard problem, even for k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document}. Accordingly, researches focused on the problem of constructing multiple CISTs in some famous networks. Pai and Chang [28] proposed a unified approach to recursively construct two CISTs with diameter 2n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n-1$$\end{document} in several n-dimensional hypercube-variant networks for n⩾4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 4$$\end{document}, including locally twisted cubes LTQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LTQ_n$$\end{document}. Later on, they provided a new construction for LTQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LTQ_n$$\end{document} and showed that the diameter of two CISTs can be reduced to 2n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n-2$$\end{document} if n=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=4$$\end{document} (and thus is optimal) and 2n-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n-3$$\end{document} if n⩾5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 5$$\end{document}. In this paper, we intend to construct more CISTs of LTQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LTQ_n$$\end{document}. We develop a novel tree searching algorithm, called two-stages tree-searching algorithm, to construct three CISTs of LTQ6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LTQ_6$$\end{document} and show that the three CISTs of the high-dimensional LTQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LTQ_n$$\end{document} for n⩾7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 7$$\end{document} can be constructed by recursion. The diameters of three CISTs for LTQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LTQ_n$$\end{document} we constructed are 9, 12 and 14 when n=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=6$$\end{document}, and are 2n-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n-3$$\end{document}, 2n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n-1$$\end{document} and 2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n+1$$\end{document} when n⩾7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 7$$\end{document}.
ISBN:3030181251
9783030181253
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-18126-0_8