State Complexity of Binary Coded Regular Languages

For the given non-unary input alphabet Σ $$\varSigma $$ , a maximal prefix code h mapping strings over Σ $$\varSigma $$ to binary strings, and an optimal deterministic finite automaton (DFA) A $$\mathcal {A}$$ with n states recognizing a language L $$\mathcal {L}$$ over Σ $$\varSigma $$ , we conside...

Full description

Saved in:
Bibliographic Details
Published inDescriptional Complexity of Formal Systems Vol. 13439; pp. 72 - 84
Main Authors Geffert, Viliam, Pališínová, Dominika, Szabari, Alexander
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031132568
3031132564
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-13257-5_6

Cover

More Information
Summary:For the given non-unary input alphabet Σ $$\varSigma $$ , a maximal prefix code h mapping strings over Σ $$\varSigma $$ to binary strings, and an optimal deterministic finite automaton (DFA) A $$\mathcal {A}$$ with n states recognizing a language L $$\mathcal {L}$$ over Σ $$\varSigma $$ , we consider the problem of how many states we need for an automaton A′ $$\mathcal {A}'$$ that decides membership in h(L) $$h(\mathcal {L})$$ , the binary coded version of L $$\mathcal {L}$$ . Namely, A′ $$\mathcal {A}'$$  accepts binary inputs belonging to h(L) $$h(\mathcal {L})$$ and rejects binary inputs belonging to h(LC) $$h(\mathcal {L}^{\scriptscriptstyle \mathrm {C}})$$ , where LC $$\mathcal {L}^{\scriptscriptstyle \mathrm {C}}$$  is the complement of L $$\mathcal {L}$$ . The outcome on inputs that are not valid binary codes for any string in Σ∗ $$\varSigma ^{*}$$ can be arbitrary: A′ $$\mathcal {A}'$$  may accept, reject, or halt in a “don’t care” state. We show that any optimal deterministic don’t care finite automaton (dcDFA) A′ $$\mathcal {A}'$$ solving this promise problem uses at most (‖Σ‖-1)·n $$(\Vert {\varSigma }\Vert -1){\cdot }n$$ states but at least n states. We also show that, for each non-unary input alphabet Σ $$\varSigma $$ , there exists a maximal binary prefix code h such that, for each n≥2 $$n\ge 2$$ and for each N in range from n to (‖Σ‖-1)·n $$(\Vert {\varSigma }\Vert -1){\cdot }n$$ , there exists a language L $$\mathcal {L}$$ over Σ $$\varSigma $$ such that the optimal DFA recognizing L $$\mathcal {L}$$ uses exactly n states and any optimal dcDFA for solving the above promise problem uses exactly N states. Thus, we have the complete state hierarchy for deciding membership in the binary coded version of L $$\mathcal {L}$$ , with no magic numbers in between the lower and upper bounds.
Bibliography:Original Abstract: For the given non-unary input alphabet Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document}, a maximal prefix code h mapping strings over Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} to binary strings, and an optimal deterministic finite automaton (DFA) A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} with n states recognizing a language L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} over Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document}, we consider the problem of how many states we need for an automaton A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}'$$\end{document} that decides membership in h(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(\mathcal {L})$$\end{document}, the binary coded version of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}. Namely, A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}'$$\end{document} accepts binary inputs belonging to h(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(\mathcal {L})$$\end{document} and rejects binary inputs belonging to h(LC)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(\mathcal {L}^{\scriptscriptstyle \mathrm {C}})$$\end{document}, where LC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}^{\scriptscriptstyle \mathrm {C}}$$\end{document} is the complement of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}. The outcome on inputs that are not valid binary codes for any string in Σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma ^{*}$$\end{document} can be arbitrary: A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}'$$\end{document} may accept, reject, or halt in a “don’t care” state. We show that any optimal deterministic don’t care finite automaton (dcDFA) A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}'$$\end{document} solving this promise problem uses at most (‖Σ‖-1)·n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Vert {\varSigma }\Vert -1){\cdot }n$$\end{document} states but at least n states. We also show that, for each non-unary input alphabet Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document}, there exists a maximal binary prefix code h such that, for each n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and for each N in range from n to (‖Σ‖-1)·n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Vert {\varSigma }\Vert -1){\cdot }n$$\end{document}, there exists a language L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} over Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} such that the optimal DFA recognizing L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} uses exactly n states and any optimal dcDFA for solving the above promise problem uses exactly N states. Thus, we have the complete state hierarchy for deciding membership in the binary coded version of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}, with no magic numbers in between the lower and upper bounds.
Supported by the Slovak grant contract VEGA 1/0177/21.
ISBN:9783031132568
3031132564
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-13257-5_6