State Complexity of Binary Coded Regular Languages
For the given non-unary input alphabet Σ $$\varSigma $$ , a maximal prefix code h mapping strings over Σ $$\varSigma $$ to binary strings, and an optimal deterministic finite automaton (DFA) A $$\mathcal {A}$$ with n states recognizing a language L $$\mathcal {L}$$ over Σ $$\varSigma $$ , we conside...
Saved in:
| Published in | Descriptional Complexity of Formal Systems Vol. 13439; pp. 72 - 84 |
|---|---|
| Main Authors | , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2022
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783031132568 3031132564 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-031-13257-5_6 |
Cover
| Summary: | For the given non-unary input alphabet Σ $$\varSigma $$ , a maximal prefix code h mapping strings over Σ $$\varSigma $$ to binary strings, and an optimal deterministic finite automaton (DFA) A $$\mathcal {A}$$ with n states recognizing a language L $$\mathcal {L}$$ over Σ $$\varSigma $$ , we consider the problem of how many states we need for an automaton A′ $$\mathcal {A}'$$ that decides membership in h(L) $$h(\mathcal {L})$$ , the binary coded version of L $$\mathcal {L}$$ . Namely, A′ $$\mathcal {A}'$$ accepts binary inputs belonging to h(L) $$h(\mathcal {L})$$ and rejects binary inputs belonging to h(LC) $$h(\mathcal {L}^{\scriptscriptstyle \mathrm {C}})$$ , where LC $$\mathcal {L}^{\scriptscriptstyle \mathrm {C}}$$ is the complement of L $$\mathcal {L}$$ . The outcome on inputs that are not valid binary codes for any string in Σ∗ $$\varSigma ^{*}$$ can be arbitrary: A′ $$\mathcal {A}'$$ may accept, reject, or halt in a “don’t care” state. We show that any optimal deterministic don’t care finite automaton (dcDFA) A′ $$\mathcal {A}'$$ solving this promise problem uses at most (‖Σ‖-1)·n $$(\Vert {\varSigma }\Vert -1){\cdot }n$$ states but at least n states. We also show that, for each non-unary input alphabet Σ $$\varSigma $$ , there exists a maximal binary prefix code h such that, for each n≥2 $$n\ge 2$$ and for each N in range from n to (‖Σ‖-1)·n $$(\Vert {\varSigma }\Vert -1){\cdot }n$$ , there exists a language L $$\mathcal {L}$$ over Σ $$\varSigma $$ such that the optimal DFA recognizing L $$\mathcal {L}$$ uses exactly n states and any optimal dcDFA for solving the above promise problem uses exactly N states. Thus, we have the complete state hierarchy for deciding membership in the binary coded version of L $$\mathcal {L}$$ , with no magic numbers in between the lower and upper bounds. |
|---|---|
| Bibliography: | Original Abstract: For the given non-unary input alphabet Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document}, a maximal prefix code h mapping strings over Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} to binary strings, and an optimal deterministic finite automaton (DFA) A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} with n states recognizing a language L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} over Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document}, we consider the problem of how many states we need for an automaton A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}'$$\end{document} that decides membership in h(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(\mathcal {L})$$\end{document}, the binary coded version of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}. Namely, A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}'$$\end{document} accepts binary inputs belonging to h(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(\mathcal {L})$$\end{document} and rejects binary inputs belonging to h(LC)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(\mathcal {L}^{\scriptscriptstyle \mathrm {C}})$$\end{document}, where LC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}^{\scriptscriptstyle \mathrm {C}}$$\end{document} is the complement of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}. The outcome on inputs that are not valid binary codes for any string in Σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma ^{*}$$\end{document} can be arbitrary: A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}'$$\end{document} may accept, reject, or halt in a “don’t care” state. We show that any optimal deterministic don’t care finite automaton (dcDFA) A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}'$$\end{document} solving this promise problem uses at most (‖Σ‖-1)·n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Vert {\varSigma }\Vert -1){\cdot }n$$\end{document} states but at least n states. We also show that, for each non-unary input alphabet Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document}, there exists a maximal binary prefix code h such that, for each n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} and for each N in range from n to (‖Σ‖-1)·n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Vert {\varSigma }\Vert -1){\cdot }n$$\end{document}, there exists a language L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} over Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} such that the optimal DFA recognizing L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} uses exactly n states and any optimal dcDFA for solving the above promise problem uses exactly N states. Thus, we have the complete state hierarchy for deciding membership in the binary coded version of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}, with no magic numbers in between the lower and upper bounds. Supported by the Slovak grant contract VEGA 1/0177/21. |
| ISBN: | 9783031132568 3031132564 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-031-13257-5_6 |