Maximization of k-Submodular Function with a Matroid Constraint
A k-submodular function is a promotion of a submodular function, whose domain is composed of k disjoint subsets rather than a single subset. In this paper, we give a deterministic algorithm for the non-monotone k-submodular function maximization problem subject to a matroid constraint with approxima...
Saved in:
| Published in | Theory and Applications of Models of Computation Vol. 13571; pp. 1 - 10 |
|---|---|
| Main Authors | , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2023
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3031203496 9783031203497 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-031-20350-3_1 |
Cover
| Summary: | A k-submodular function is a promotion of a submodular function, whose domain is composed of k disjoint subsets rather than a single subset. In this paper, we give a deterministic algorithm for the non-monotone k-submodular function maximization problem subject to a matroid constraint with approximation factor 1/3. Based on this result, we give a randomized 1/3-approximation algorithm for the problem with faster running time, but the probability of success is (1-ε) $$(1-\varepsilon )$$ . And we obtain that the complexity of deterministic algorithm and random algorithm is O(N|D|(p+kq)) $$O(N|D|(p+kq))$$ and O(|D|(plogNε1+kqlogNε2)logN) $$O(|D|(p\log \frac{N}{\varepsilon _1}+ k q\log \frac{N}{\varepsilon _2})\log N)$$ respectively, where D is the ground set of the matroid constraint with rank N, p is times of oracle to calculate whether a set is an independent set in this matroid, q is the times of oracle to calculate a value of the k-submodular function, and ε,ε1,ε2 $$\varepsilon , \varepsilon _1, \varepsilon _2$$ are positive parameters with ε=maxε1,ε2 $$\varepsilon =\max \{\varepsilon _1,\varepsilon _2\}$$ . |
|---|---|
| Bibliography: | Original Abstract: A k-submodular function is a promotion of a submodular function, whose domain is composed of k disjoint subsets rather than a single subset. In this paper, we give a deterministic algorithm for the non-monotone k-submodular function maximization problem subject to a matroid constraint with approximation factor 1/3. Based on this result, we give a randomized 1/3-approximation algorithm for the problem with faster running time, but the probability of success is (1-ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\varepsilon )$$\end{document}. And we obtain that the complexity of deterministic algorithm and random algorithm is O(N|D|(p+kq))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N|D|(p+kq))$$\end{document} and O(|D|(plogNε1+kqlogNε2)logN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|D|(p\log \frac{N}{\varepsilon _1}+ k q\log \frac{N}{\varepsilon _2})\log N)$$\end{document} respectively, where D is the ground set of the matroid constraint with rank N, p is times of oracle to calculate whether a set is an independent set in this matroid, q is the times of oracle to calculate a value of the k-submodular function, and ε,ε1,ε2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon , \varepsilon _1, \varepsilon _2$$\end{document} are positive parameters with ε=max{ε1,ε2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =\max \{\varepsilon _1,\varepsilon _2\}$$\end{document}. Supported by Natural Science Foundation of Shandong Province (No. ZR2020MA029) of China. |
| ISBN: | 3031203496 9783031203497 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-031-20350-3_1 |