Maximization of k-Submodular Function with a Matroid Constraint

A k-submodular function is a promotion of a submodular function, whose domain is composed of k disjoint subsets rather than a single subset. In this paper, we give a deterministic algorithm for the non-monotone k-submodular function maximization problem subject to a matroid constraint with approxima...

Full description

Saved in:
Bibliographic Details
Published inTheory and Applications of Models of Computation Vol. 13571; pp. 1 - 10
Main Authors Sun, Yunjing, Liu, Yuezhu, Li, Min
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2023
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3031203496
9783031203497
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-20350-3_1

Cover

More Information
Summary:A k-submodular function is a promotion of a submodular function, whose domain is composed of k disjoint subsets rather than a single subset. In this paper, we give a deterministic algorithm for the non-monotone k-submodular function maximization problem subject to a matroid constraint with approximation factor 1/3. Based on this result, we give a randomized 1/3-approximation algorithm for the problem with faster running time, but the probability of success is (1-ε) $$(1-\varepsilon )$$ . And we obtain that the complexity of deterministic algorithm and random algorithm is O(N|D|(p+kq)) $$O(N|D|(p+kq))$$ and O(|D|(plogNε1+kqlogNε2)logN) $$O(|D|(p\log \frac{N}{\varepsilon _1}+ k q\log \frac{N}{\varepsilon _2})\log N)$$ respectively, where D is the ground set of the matroid constraint with rank N, p is times of oracle to calculate whether a set is an independent set in this matroid, q is the times of oracle to calculate a value of the k-submodular function, and ε,ε1,ε2 $$\varepsilon , \varepsilon _1, \varepsilon _2$$ are positive parameters with ε=maxε1,ε2 $$\varepsilon =\max \{\varepsilon _1,\varepsilon _2\}$$ .
Bibliography:Original Abstract: A k-submodular function is a promotion of a submodular function, whose domain is composed of k disjoint subsets rather than a single subset. In this paper, we give a deterministic algorithm for the non-monotone k-submodular function maximization problem subject to a matroid constraint with approximation factor 1/3. Based on this result, we give a randomized 1/3-approximation algorithm for the problem with faster running time, but the probability of success is (1-ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-\varepsilon )$$\end{document}. And we obtain that the complexity of deterministic algorithm and random algorithm is O(N|D|(p+kq))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N|D|(p+kq))$$\end{document} and O(|D|(plogNε1+kqlogNε2)logN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|D|(p\log \frac{N}{\varepsilon _1}+ k q\log \frac{N}{\varepsilon _2})\log N)$$\end{document} respectively, where D is the ground set of the matroid constraint with rank N, p is times of oracle to calculate whether a set is an independent set in this matroid, q is the times of oracle to calculate a value of the k-submodular function, and ε,ε1,ε2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon , \varepsilon _1, \varepsilon _2$$\end{document} are positive parameters with ε=max{ε1,ε2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =\max \{\varepsilon _1,\varepsilon _2\}$$\end{document}.
Supported by Natural Science Foundation of Shandong Province (No. ZR2020MA029) of China.
ISBN:3031203496
9783031203497
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-20350-3_1