Maximum Entropy Distribution Estimation with Generalized Regularization
We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As sp...
Saved in:
| Published in | Learning Theory pp. 123 - 138 |
|---|---|
| Main Authors | , |
| Format | Book Chapter Conference Proceeding |
| Language | English |
| Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2006
Springer |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3540352945 9783540352945 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/11776420_12 |
Cover
| Abstract | We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, including ℓ1, ℓ2, $\ell_{\rm 2}^{\rm 2}$ and ℓ1 + $\ell_{\rm 2}^{\rm 2}$ style regularization. Furthermore, our general approach enables us to use information about the structure of the feature space or about sample selection bias to derive entirely new regularization functions with superior guarantees. We propose an algorithm solving a large and general subclass of generalized maxent problems, including all discussed in the paper, and prove its convergence. Our approach generalizes techniques based on information geometry and Bregman divergences as well as those based more directly on compactness. |
|---|---|
| AbstractList | We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, including ℓ1, ℓ2, $\ell_{\rm 2}^{\rm 2}$ and ℓ1 + $\ell_{\rm 2}^{\rm 2}$ style regularization. Furthermore, our general approach enables us to use information about the structure of the feature space or about sample selection bias to derive entirely new regularization functions with superior guarantees. We propose an algorithm solving a large and general subclass of generalized maxent problems, including all discussed in the paper, and prove its convergence. Our approach generalizes techniques based on information geometry and Bregman divergences as well as those based more directly on compactness. |
| Author | Schapire, Robert E. Dudík, Miroslav |
| Author_xml | – sequence: 1 givenname: Miroslav surname: Dudík fullname: Dudík, Miroslav email: mdudik@cs.princeton.edu organization: Department of Computer Science, Princeton University, Princeton – sequence: 2 givenname: Robert E. surname: Schapire fullname: Schapire, Robert E. email: schapire@cs.princeton.edu organization: Department of Computer Science, Princeton University, Princeton |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19150817$$DView record in Pascal Francis |
| BookMark | eNpNkM9LwzAYhqNOcJs7-Q_04sFDNV9-NM1R5pzCRBA9l7RJZrRLS9Ki219v2RQ8fS88Ly8fzwSNfOMNQheArwFjcQMgRMYILoAcoZkUOeUMU05kJo_RGDKAlFImT9DkDzA-QmNMMUmlYPQMTWL8wBgTIckYLZ_Ut9v0m2Thu9C02-TOxS64su9c45NF7NxG7eOX696TpfEmqNrtjE5ezLqvVXC7PT9Hp1bV0cx-7xS93S9e5w_p6nn5OL9dpS0B2aUlqYiywuSW81xpY4FqkYG1kkmGM51bYCJTtNKMEiZtpai2mmfC4tLmVtMpujzstipWqrZB-crFog3Dn2FbgASOcxBD7-rQiwPyaxOKsmk-YwGDuEFj8U8j_QGHK2L4 |
| ContentType | Book Chapter Conference Proceeding |
| Copyright | Springer-Verlag Berlin Heidelberg 2006 2007 INIST-CNRS |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2006 – notice: 2007 INIST-CNRS |
| DBID | IQODW |
| DOI | 10.1007/11776420_12 |
| DatabaseName | Pascal-Francis |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISBN | 9783540352969 3540352961 |
| EISSN | 1611-3349 |
| Editor | Lugosi, Gábor Simon, Hans Ulrich |
| Editor_xml | – sequence: 1 givenname: Gábor surname: Lugosi fullname: Lugosi, Gábor email: lugosi@upf.es – sequence: 2 givenname: Hans Ulrich surname: Simon fullname: Simon, Hans Ulrich email: simon@lmi.rub.de |
| EndPage | 138 |
| ExternalDocumentID | 19150817 |
| GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 IQODW RIG |
| ID | FETCH-LOGICAL-p219t-b2c2af7e8f558adef13d761ff949406d8f1476a3cd43249fca3dfd567f0bf8fd3 |
| ISBN | 3540352945 9783540352945 |
| ISSN | 0302-9743 |
| IngestDate | Wed Apr 02 07:27:07 EDT 2025 Wed Sep 17 03:09:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Information use Divergence Compactness Bias Convex function Potential function Method of maximum entropy Artificial intelligence |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MeetingName | Learning theory (19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006) |
| MergedId | FETCHMERGED-LOGICAL-p219t-b2c2af7e8f558adef13d761ff949406d8f1476a3cd43249fca3dfd567f0bf8fd3 |
| Notes | Original Abstract: We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, including ℓ1, ℓ2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell_{\rm 2}^{\rm 2}$\end{document} and ℓ1 + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell_{\rm 2}^{\rm 2}$\end{document} style regularization. Furthermore, our general approach enables us to use information about the structure of the feature space or about sample selection bias to derive entirely new regularization functions with superior guarantees. We propose an algorithm solving a large and general subclass of generalized maxent problems, including all discussed in the paper, and prove its convergence. Our approach generalizes techniques based on information geometry and Bregman divergences as well as those based more directly on compactness. |
| PageCount | 16 |
| ParticipantIDs | pascalfrancis_primary_19150817 springer_books_10_1007_11776420_12 |
| PublicationCentury | 2000 |
| PublicationDate | 2006 |
| PublicationDateYYYYMMDD | 2006-01-01 |
| PublicationDate_xml | – year: 2006 text: 2006 |
| PublicationDecade | 2000 |
| PublicationPlace | Berlin, Heidelberg |
| PublicationPlace_xml | – name: Berlin, Heidelberg – name: Berlin – name: New York |
| PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSubtitle | 19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006. Proceedings |
| PublicationTitle | Learning Theory |
| PublicationYear | 2006 |
| Publisher | Springer Berlin Heidelberg Springer |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Tygar, Dough Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, CA, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, MA, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 13 givenname: Dough surname: Tygar fullname: Tygar, Dough organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany |
| SSID | ssj0002792 ssj0000318645 |
| Score | 1.8435347 |
| Snippet | We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or,... |
| SourceID | pascalfrancis springer |
| SourceType | Index Database Publisher |
| StartPage | 123 |
| SubjectTerms | Applied sciences Artificial intelligence Computer science; control theory; systems Dual Objective Exact sciences and technology Generalize Regularization Gibbs Distribution Performance Guarantee Relative Entropy |
| Title | Maximum Entropy Distribution Estimation with Generalized Regularization |
| URI | http://link.springer.com/10.1007/11776420_12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELagaBLaA4wNjfFD1sRbFNQ0jhM_IgggNHiCibfKiW0NQUtFw7Tx13OXc9J0IDR4idqkaix_yfl8d993jO1mzhYC9smhFlaFwmRlWIDnECYGfFcTS7iE3OGzc3lyKU6vkqtZe6uaXVIVe-Xji7yS96AK5wBXZMm-Adn2T-EEfAZ84QgIw_Ef53c-zErs5Sao0dLrvUdq6uT34Q1VxcMqeKt_z_Itv_TEh6OpqDrI97qPzZn-cz16GAU5VrBP_qI6Z9sTK8jBHhDVkeK3XrP6-tEiyRGb2t97WicZKxRRnsJAKU1xflfV1V9B00miMSyvRh6ayGPwijCXDyyBl6dINbLhaoEdhp0MmTZLpleioGJMAqbenEaDuLMyR6QD88zoU50HZp9hMwV7GliRF-G-Pba0n5_--NmG3NB-1UlXv1CjdiIlmWgwnvpDg_3QRsXou-d2Iu2ycycspdVTeJsctUF5lk-v3ZSLVfYRqSscOSUwvZ_Ygh2vsZVmurmf7s_s2KPMPcq8izKfocwRZd5Bmc-j_IVdHuUXByeh76gRTmBlqsJiUA60S23mkiTTxrooNqmMnFNCgWdnMheJVOq4NCjUqFypY-NMIlPXL1zmTLzOeuO7sf3KuJR9pzJt-7G1Qgqr0TfM1MBEUpVSFBtsZ25mhhNSTxlGClsQROkG-95M1RBfoumwUdDuzO-3__nRJluePZ5brFfdP9htcBWrYsc_Ak8sOmRV |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Learning+Theory&rft.au=Dud%C3%ADk%2C+Miroslav&rft.au=Schapire%2C+Robert+E.&rft.atitle=Maximum+Entropy+Distribution+Estimation+with+Generalized+Regularization&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2006-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540352945&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=123&rft.epage=138&rft_id=info:doi/10.1007%2F11776420_12 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |