Maximum Entropy Distribution Estimation with Generalized Regularization

We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As sp...

Full description

Saved in:
Bibliographic Details
Published inLearning Theory pp. 123 - 138
Main Authors Dudík, Miroslav, Schapire, Robert E.
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2006
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3540352945
9783540352945
ISSN0302-9743
1611-3349
DOI10.1007/11776420_12

Cover

Abstract We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, including ℓ1, ℓ2, $\ell_{\rm 2}^{\rm 2}$ and ℓ1 + $\ell_{\rm 2}^{\rm 2}$ style regularization. Furthermore, our general approach enables us to use information about the structure of the feature space or about sample selection bias to derive entirely new regularization functions with superior guarantees. We propose an algorithm solving a large and general subclass of generalized maxent problems, including all discussed in the paper, and prove its convergence. Our approach generalizes techniques based on information geometry and Bregman divergences as well as those based more directly on compactness.
AbstractList We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, including ℓ1, ℓ2, $\ell_{\rm 2}^{\rm 2}$ and ℓ1 + $\ell_{\rm 2}^{\rm 2}$ style regularization. Furthermore, our general approach enables us to use information about the structure of the feature space or about sample selection bias to derive entirely new regularization functions with superior guarantees. We propose an algorithm solving a large and general subclass of generalized maxent problems, including all discussed in the paper, and prove its convergence. Our approach generalizes techniques based on information geometry and Bregman divergences as well as those based more directly on compactness.
Author Schapire, Robert E.
Dudík, Miroslav
Author_xml – sequence: 1
  givenname: Miroslav
  surname: Dudík
  fullname: Dudík, Miroslav
  email: mdudik@cs.princeton.edu
  organization: Department of Computer Science, Princeton University, Princeton
– sequence: 2
  givenname: Robert E.
  surname: Schapire
  fullname: Schapire, Robert E.
  email: schapire@cs.princeton.edu
  organization: Department of Computer Science, Princeton University, Princeton
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19150817$$DView record in Pascal Francis
BookMark eNpNkM9LwzAYhqNOcJs7-Q_04sFDNV9-NM1R5pzCRBA9l7RJZrRLS9Ki219v2RQ8fS88Ly8fzwSNfOMNQheArwFjcQMgRMYILoAcoZkUOeUMU05kJo_RGDKAlFImT9DkDzA-QmNMMUmlYPQMTWL8wBgTIckYLZ_Ut9v0m2Thu9C02-TOxS64su9c45NF7NxG7eOX696TpfEmqNrtjE5ezLqvVXC7PT9Hp1bV0cx-7xS93S9e5w_p6nn5OL9dpS0B2aUlqYiywuSW81xpY4FqkYG1kkmGM51bYCJTtNKMEiZtpai2mmfC4tLmVtMpujzstipWqrZB-crFog3Dn2FbgASOcxBD7-rQiwPyaxOKsmk-YwGDuEFj8U8j_QGHK2L4
ContentType Book Chapter
Conference Proceeding
Copyright Springer-Verlag Berlin Heidelberg 2006
2007 INIST-CNRS
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2006
– notice: 2007 INIST-CNRS
DBID IQODW
DOI 10.1007/11776420_12
DatabaseName Pascal-Francis
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISBN 9783540352969
3540352961
EISSN 1611-3349
Editor Lugosi, Gábor
Simon, Hans Ulrich
Editor_xml – sequence: 1
  givenname: Gábor
  surname: Lugosi
  fullname: Lugosi, Gábor
  email: lugosi@upf.es
– sequence: 2
  givenname: Hans Ulrich
  surname: Simon
  fullname: Simon, Hans Ulrich
  email: simon@lmi.rub.de
EndPage 138
ExternalDocumentID 19150817
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
IQODW
RIG
ID FETCH-LOGICAL-p219t-b2c2af7e8f558adef13d761ff949406d8f1476a3cd43249fca3dfd567f0bf8fd3
ISBN 3540352945
9783540352945
ISSN 0302-9743
IngestDate Wed Apr 02 07:27:07 EDT 2025
Wed Sep 17 03:09:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Information use
Divergence
Compactness
Bias
Convex function
Potential function
Method of maximum entropy
Artificial intelligence
Language English
License CC BY 4.0
LinkModel OpenURL
MeetingName Learning theory (19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006)
MergedId FETCHMERGED-LOGICAL-p219t-b2c2af7e8f558adef13d761ff949406d8f1476a3cd43249fca3dfd567f0bf8fd3
Notes Original Abstract: We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, including ℓ1, ℓ2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell_{\rm 2}^{\rm 2}$\end{document} and ℓ1 + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell_{\rm 2}^{\rm 2}$\end{document} style regularization. Furthermore, our general approach enables us to use information about the structure of the feature space or about sample selection bias to derive entirely new regularization functions with superior guarantees. We propose an algorithm solving a large and general subclass of generalized maxent problems, including all discussed in the paper, and prove its convergence. Our approach generalizes techniques based on information geometry and Bregman divergences as well as those based more directly on compactness.
PageCount 16
ParticipantIDs pascalfrancis_primary_19150817
springer_books_10_1007_11776420_12
PublicationCentury 2000
PublicationDate 2006
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: 2006
PublicationDecade 2000
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Berlin
– name: New York
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle 19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006. Proceedings
PublicationTitle Learning Theory
PublicationYear 2006
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Tygar, Dough
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, CA, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, MA, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 13
  givenname: Dough
  surname: Tygar
  fullname: Tygar, Dough
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany
SSID ssj0002792
ssj0000318645
Score 1.8435347
Snippet We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or,...
SourceID pascalfrancis
springer
SourceType Index Database
Publisher
StartPage 123
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Dual Objective
Exact sciences and technology
Generalize Regularization
Gibbs Distribution
Performance Guarantee
Relative Entropy
Title Maximum Entropy Distribution Estimation with Generalized Regularization
URI http://link.springer.com/10.1007/11776420_12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELagaBLaA4wNjfFD1sRbFNQ0jhM_IgggNHiCibfKiW0NQUtFw7Tx13OXc9J0IDR4idqkaix_yfl8d993jO1mzhYC9smhFlaFwmRlWIDnECYGfFcTS7iE3OGzc3lyKU6vkqtZe6uaXVIVe-Xji7yS96AK5wBXZMm-Adn2T-EEfAZ84QgIw_Ef53c-zErs5Sao0dLrvUdq6uT34Q1VxcMqeKt_z_Itv_TEh6OpqDrI97qPzZn-cz16GAU5VrBP_qI6Z9sTK8jBHhDVkeK3XrP6-tEiyRGb2t97WicZKxRRnsJAKU1xflfV1V9B00miMSyvRh6ayGPwijCXDyyBl6dINbLhaoEdhp0MmTZLpleioGJMAqbenEaDuLMyR6QD88zoU50HZp9hMwV7GliRF-G-Pba0n5_--NmG3NB-1UlXv1CjdiIlmWgwnvpDg_3QRsXou-d2Iu2ycycspdVTeJsctUF5lk-v3ZSLVfYRqSscOSUwvZ_Ygh2vsZVmurmf7s_s2KPMPcq8izKfocwRZd5Bmc-j_IVdHuUXByeh76gRTmBlqsJiUA60S23mkiTTxrooNqmMnFNCgWdnMheJVOq4NCjUqFypY-NMIlPXL1zmTLzOeuO7sf3KuJR9pzJt-7G1Qgqr0TfM1MBEUpVSFBtsZ25mhhNSTxlGClsQROkG-95M1RBfoumwUdDuzO-3__nRJluePZ5brFfdP9htcBWrYsc_Ak8sOmRV
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Learning+Theory&rft.au=Dud%C3%ADk%2C+Miroslav&rft.au=Schapire%2C+Robert+E.&rft.atitle=Maximum+Entropy+Distribution+Estimation+with+Generalized+Regularization&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2006-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540352945&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=123&rft.epage=138&rft_id=info:doi/10.1007%2F11776420_12
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon