Maximum Entropy Distribution Estimation with Generalized Regularization

We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As sp...

Full description

Saved in:
Bibliographic Details
Published inLearning Theory pp. 123 - 138
Main Authors Dudík, Miroslav, Schapire, Robert E.
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2006
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3540352945
9783540352945
ISSN0302-9743
1611-3349
DOI10.1007/11776420_12

Cover

More Information
Summary:We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, including ℓ1, ℓ2, $\ell_{\rm 2}^{\rm 2}$ and ℓ1 + $\ell_{\rm 2}^{\rm 2}$ style regularization. Furthermore, our general approach enables us to use information about the structure of the feature space or about sample selection bias to derive entirely new regularization functions with superior guarantees. We propose an algorithm solving a large and general subclass of generalized maxent problems, including all discussed in the paper, and prove its convergence. Our approach generalizes techniques based on information geometry and Bregman divergences as well as those based more directly on compactness.
Bibliography:Original Abstract: We present a unified and complete account of maximum entropy distribution estimation subject to constraints represented by convex potential functions or, alternatively, by convex regularization. We provide fully general performance guarantees and an algorithm with a complete convergence proof. As special cases, we can easily derive performance guarantees for many known regularization types, including ℓ1, ℓ2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell_{\rm 2}^{\rm 2}$\end{document} and ℓ1 + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell_{\rm 2}^{\rm 2}$\end{document} style regularization. Furthermore, our general approach enables us to use information about the structure of the feature space or about sample selection bias to derive entirely new regularization functions with superior guarantees. We propose an algorithm solving a large and general subclass of generalized maxent problems, including all discussed in the paper, and prove its convergence. Our approach generalizes techniques based on information geometry and Bregman divergences as well as those based more directly on compactness.
ISBN:3540352945
9783540352945
ISSN:0302-9743
1611-3349
DOI:10.1007/11776420_12