The Optimal-Location Query

We propose and solve the optimal-location query in spatial databases. Given a set S of sites, a set O of weighted objects, and a spatial region Q, the optimal-location query returns a location in Q with maximum influence. Here the influence of a location l is the total weight of its RNNs, i.e. the t...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Spatial and Temporal Databases pp. 163 - 180
Main Authors Du, Yang, Zhang, Donghui, Xia, Tian
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3540281274
9783540281276
ISSN0302-9743
1611-3349
DOI10.1007/11535331_10

Cover

More Information
Summary:We propose and solve the optimal-location query in spatial databases. Given a set S of sites, a set O of weighted objects, and a spatial region Q, the optimal-location query returns a location in Q with maximum influence. Here the influence of a location l is the total weight of its RNNs, i.e. the total weight of objects in O that are closer to l than to any site in S. This new query has practical applications, but is very challenging to solve. Existing work on computing RNNs assumes a single query location, and thus cannot be used to compute optimal locations. The reason is that there are infinite candidate locations in Q. If we check a finite set of candidate locations, the result can be inaccurate, i.e. the revealed location may not have maximum influence. This paper proposes three methods that accurately compute optimal locations. The first method uses a standard R*-tree. To compute an optimal location, the method retrieves certain objects from the R*-tree and sends them as a stream to a plane-sweep algorithm, which uses a new data structure called the aSB-tree to ensure query efficiency. The second method is based on a new index structure called the OL-tree, which novelly extends the k-d-B-tree to store segmented rectangular records. The OL-tree is only of theoretical usage for it is not space efficient. The most practical approach is based on a new index structure called the Virtual OL-tree. These methods are theoretically and experimentally evaluated.
ISBN:3540281274
9783540281276
ISSN:0302-9743
1611-3349
DOI:10.1007/11535331_10