High-resolution analysis of bound Ca2+ in neurons and synapses
Calcium (Ca2+) is a well-known second messenger in all cells, and is especially relevant for neuronal activity. Neuronal Ca2+ is found in different forms, with a minority being freely soluble in the cell and more than 99% being bound to proteins. Free Ca2+ has received much attention over the last f...
Saved in:
Published in | Life science alliance Vol. 7; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Life Science Alliance LLC
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2575-1077 2575-1077 |
DOI | 10.26508/lsa.202302030 |
Cover
Summary: | Calcium (Ca2+) is a well-known second messenger in all cells, and is especially relevant for neuronal activity. Neuronal Ca2+ is found in different forms, with a minority being freely soluble in the cell and more than 99% being bound to proteins. Free Ca2+ has received much attention over the last few decades, but protein-bound Ca2+ has been difficult to analyze. Here, we introduce correlative fluorescence and nanoscale secondary ion mass spectrometry imaging as a tool to describe bound Ca2+ As expected, bound Ca2+ is ubiquitous. It does not correlate to free Ca2+ dynamics at the whole-neuron level, but does correlate significantly to the intensity of markers for GABAergic pre-synapse and glutamatergic post-synapses. In contrast, a negative correlation to pre-synaptic activity was observed, with lower levels of bound Ca2+ observed in the more active synapses. We conclude that bound Ca2+ may regulate neuronal activity and should receive more attention in the future.Calcium (Ca2+) is a well-known second messenger in all cells, and is especially relevant for neuronal activity. Neuronal Ca2+ is found in different forms, with a minority being freely soluble in the cell and more than 99% being bound to proteins. Free Ca2+ has received much attention over the last few decades, but protein-bound Ca2+ has been difficult to analyze. Here, we introduce correlative fluorescence and nanoscale secondary ion mass spectrometry imaging as a tool to describe bound Ca2+ As expected, bound Ca2+ is ubiquitous. It does not correlate to free Ca2+ dynamics at the whole-neuron level, but does correlate significantly to the intensity of markers for GABAergic pre-synapse and glutamatergic post-synapses. In contrast, a negative correlation to pre-synaptic activity was observed, with lower levels of bound Ca2+ observed in the more active synapses. We conclude that bound Ca2+ may regulate neuronal activity and should receive more attention in the future. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2575-1077 2575-1077 |
DOI: | 10.26508/lsa.202302030 |