New Options for Hoeffding Trees
Hoeffding trees are state-of-the-art for processing high-speed data streams. Their ingenuity stems from updating sufficient statistics, only addressing growth when decisions can be made that are guaranteed to be almost identical to those that would be made by conventional batch learning methods. Des...
Saved in:
| Published in | AI 2007: Advances in Artificial Intelligence Vol. 4830; pp. 90 - 99 |
|---|---|
| Main Authors | , , |
| Format | Book Chapter |
| Language | English |
| Published |
Germany
Springer Berlin / Heidelberg
2007
Springer Berlin Heidelberg |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783540769262 3540769269 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-540-76928-6_11 |
Cover
| Summary: | Hoeffding trees are state-of-the-art for processing high-speed data streams. Their ingenuity stems from updating sufficient statistics, only addressing growth when decisions can be made that are guaranteed to be almost identical to those that would be made by conventional batch learning methods. Despite this guarantee, decisions are still subject to limited lookahead and stability issues. In this paper we explore Hoeffding Option Trees, a regular Hoeffding tree containing additional option nodes that allow several tests to be applied, leading to multiple Hoeffding trees as separate paths. We show how to control tree growth in order to generate a mixture of paths, and empirically determine a reasonable number of paths. We then empirically evaluate a spectrum of Hoeffding tree variations: single trees, option trees and bagged trees. Finally, we investigate pruning. We show that on some datasets a pruned option tree can be smaller and more accurate than a single tree. |
|---|---|
| ISBN: | 9783540769262 3540769269 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-540-76928-6_11 |