Power transformers fault diagnosis based on a meta-learning approach to kernel extreme learning machine with opposition-based learning sparrow search algorithm

Considering the power transformers fault diagnosis model has unstable performance and prone to over-fitting, we propose a transformers fault diagnosis model based on a meta-learning approach to kernel extreme learning machine with opposition-based learning sparrow search algorithm optimization (Meta...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 44; no. 1; p. 455
Main Authors Song, Yu, Tan, Weimin, Zhang, Chengming, Tang, Chao, Cai, Lihong, Hu, Dong
Format Journal Article
LanguageEnglish
Published London Sage Publications Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-211862

Cover

Abstract Considering the power transformers fault diagnosis model has unstable performance and prone to over-fitting, we propose a transformers fault diagnosis model based on a meta-learning approach to kernel extreme learning machine with opposition-based learning sparrow search algorithm optimization (Meta-OSSA-KELM) in this paper. Its learning proceeds in two steps. Firstly, the base-learner KELMs is trained on the disjoint training subset. Then, meta-learner KELM is trained with the hidden codes of training set in base-learner KELMs that have been trained. In this paper, chaotic mapping and opposition-based learning are integrated into Sparrow search algorithm(SSA) and used it to optimize each learner. We simulate this model with measured dissolved gas analysis(DGA) data, the results show that compared with PSO and SSA, opposition-based learning sparrow search algorithm(OSSA) has better global search-ability on the optimization for the proposed model. In addition, compared with Adaboost.M1, BPNN, SVM and KELM, Meta-OSSA-KELM has a higher average accuracy (90.9% vs 78.5%, 74.0%, 76.9%, 76.9%) and a lower standard deviation (1.56×10–2 vs 4.21×10–2, 10.5×10–2, 3.7×10–2, 2.18×10–2) in simulation tests for 30 times. It is shown that the proposed model is a stable and better performance transformers fault diagnosis method.
AbstractList Considering the power transformers fault diagnosis model has unstable performance and prone to over-fitting, we propose a transformers fault diagnosis model based on a meta-learning approach to kernel extreme learning machine with opposition-based learning sparrow search algorithm optimization (Meta-OSSA-KELM) in this paper. Its learning proceeds in two steps. Firstly, the base-learner KELMs is trained on the disjoint training subset. Then, meta-learner KELM is trained with the hidden codes of training set in base-learner KELMs that have been trained. In this paper, chaotic mapping and opposition-based learning are integrated into Sparrow search algorithm(SSA) and used it to optimize each learner. We simulate this model with measured dissolved gas analysis(DGA) data, the results show that compared with PSO and SSA, opposition-based learning sparrow search algorithm(OSSA) has better global search-ability on the optimization for the proposed model. In addition, compared with Adaboost.M1, BPNN, SVM and KELM, Meta-OSSA-KELM has a higher average accuracy (90.9% vs 78.5%, 74.0%, 76.9%, 76.9%) and a lower standard deviation (1.56×10–2 vs 4.21×10–2, 10.5×10–2, 3.7×10–2, 2.18×10–2) in simulation tests for 30 times. It is shown that the proposed model is a stable and better performance transformers fault diagnosis method.
Author Cai, Lihong
Zhang, Chengming
Hu, Dong
Tan, Weimin
Song, Yu
Tang, Chao
Author_xml – sequence: 1
  givenname: Yu
  surname: Song
  fullname: Song, Yu
– sequence: 2
  givenname: Weimin
  surname: Tan
  fullname: Tan, Weimin
– sequence: 3
  givenname: Chengming
  surname: Zhang
  fullname: Zhang, Chengming
– sequence: 4
  givenname: Chao
  surname: Tang
  fullname: Tang, Chao
– sequence: 5
  givenname: Lihong
  surname: Cai
  fullname: Cai, Lihong
– sequence: 6
  givenname: Dong
  surname: Hu
  fullname: Hu, Dong
BookMark eNo9j91KAzEQhYMo2FavfIGA16v522xyKcVqpaCgXpfs7qTdupusSUp9G1_VQKVXZ5hz5hvOFJ077wChG0ruOOP8_mW5eC8YpUqyMzShqioLpWV1nmciRUGZkJdoGuOOEFqVjEzQ75s_QMApGBetDwOEiK3Z9wm3ndk4H7uIaxOhxd5hgwdIpujBBNe5DTbjGLxptjh5_AXBQY_hJwUYAJ8yQ_Y7B_jQpS3245iJqfOuOEJPsTiaEPwBx7zIQNNvfMgXwxW6sKaPcP2vM_S5ePyYPxer16fl_GFVjFTxVDS8NqVQWkjC65K3SjAFzFrTSLDQWEFYW7W2lrpRQlNKtdYtNQ0BSgS0jM_Q7ZGbG33vIab1zu-Dyy_XrJKUlZqziv8BMN5xXA
ContentType Journal Article
Copyright Copyright IOS Press BV 2023
Copyright_xml – notice: Copyright IOS Press BV 2023
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-211862
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
GroupedDBID .4S
.DC
4.4
5GY
7SC
8FD
8VB
AAGLT
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EMK
EPL
EST
ESX
H13
HZ~
I-F
IOS
JQ2
K1G
L7B
L7M
L~C
L~D
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
ID FETCH-LOGICAL-p183t-c3ba54894603b53d8428e2ffac6efecf402d7dfb69c849111999d1ac0e104ed23
ISSN 1064-1246
IngestDate Fri Jul 25 10:08:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-c3ba54894603b53d8428e2ffac6efecf402d7dfb69c849111999d1ac0e104ed23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2761259327
PQPubID 2046407
ParticipantIDs proquest_journals_2761259327
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2023
Publisher Sage Publications Ltd
Publisher_xml – name: Sage Publications Ltd
SSID ssj0017520
Score 2.3062866
SecondaryResourceType retracted_publication
Snippet Considering the power transformers fault diagnosis model has unstable performance and prone to over-fitting, we propose a transformers fault diagnosis model...
SourceID proquest
SourceType Aggregation Database
StartPage 455
SubjectTerms Algorithms
Artificial neural networks
Dissolved gases
Fault diagnosis
Gas analysis
Kernels
Machine learning
Optimization
Search algorithms
Training
Transformers
Title Power transformers fault diagnosis based on a meta-learning approach to kernel extreme learning machine with opposition-based learning sparrow search algorithm
URI https://www.proquest.com/docview/2761259327
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: AMVHM
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKu4DOQH9lQZUtu5PU5jVZnWgbQWylNlx8420SalSx7on-FH8Yc4jp007QABL1HkuEmU8_XcfPwdhF4xoWImeExCpSnhMvaJVFoRySLeV0HI44q-eHQWDCf8ZOpPO50fraqlspCvk_Uv95X8j1RhDORqdsn-g2Sbm8IAnIN84QgShuNfyfiDaXFmujxY39PsxU1FOS9MRtUU0F1d94yVUmZFoGoWLci8ToXUZOLG-fyiV5me90BPm2xhr5mzqCottU3W5su6wIvYmzbTQCkZJseey6CI-UW-gl8sfuP4XjUsoEUFvLRcr785SunGwz93pcKfy01uoVKQn7TpQ3Yj3310qbOLRW2H7XR3QeTt1AZlO6mNdtWSLQvcVDoZXQ3eFAH3xDFp2zEIv0gU2w4ftYK3BJNbQLbamluG4F0rwqjJcg9O3g3OCcTHkTMXW1zdZ-9ng8np6Wx8PB0fsMHyKzGNzMyC_wF7a5F2C-1RMDVeF-0djj4OR83iVuhTS5Lh3t9uGzVPfdN65g3noPJ4xvfQXScxfGhxdx91dPYA3WkRWD5E3ysE4jYCcYVA3CAQV2DBeYYF3kIgrhGIixxbBGKHQNzMcQjEBoF4F4GbaQ6B2CIQNwh8hCaD4_HRkLiWH2QJtqUgCZMCYuiYBx6TPlMRRMeapqlIAp3qJOUeVaFKZRAnETd2GuIb1ReJp_se14qyx6ib5Zl-gjBNlPISbjreUR6qOJI0jX0qPS5D3ZfeU7Rff9-Z-09fz0Bg4PFDTBM--_Pl5-j2BrH7qFusSv0C3NNCvnTi_gmTTZ9e
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+transformers+fault+diagnosis+based+on+a+meta-learning+approach+to+kernel+extreme+learning+machine+with+opposition-based+learning+sparrow+search+algorithm&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Song%2C+Yu&rft.au=Tan%2C+Weimin&rft.au=Zhang%2C+Chengming&rft.au=Tang%2C+Chao&rft.date=2023-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=44&rft.issue=1&rft.spage=455&rft_id=info:doi/10.3233%2FJIFS-211862&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon