Power transformers fault diagnosis based on a meta-learning approach to kernel extreme learning machine with opposition-based learning sparrow search algorithm

Considering the power transformers fault diagnosis model has unstable performance and prone to over-fitting, we propose a transformers fault diagnosis model based on a meta-learning approach to kernel extreme learning machine with opposition-based learning sparrow search algorithm optimization (Meta...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 44; no. 1; p. 455
Main Authors Song, Yu, Tan, Weimin, Zhang, Chengming, Tang, Chao, Cai, Lihong, Hu, Dong
Format Journal Article
LanguageEnglish
Published London Sage Publications Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-211862

Cover

More Information
Summary:Considering the power transformers fault diagnosis model has unstable performance and prone to over-fitting, we propose a transformers fault diagnosis model based on a meta-learning approach to kernel extreme learning machine with opposition-based learning sparrow search algorithm optimization (Meta-OSSA-KELM) in this paper. Its learning proceeds in two steps. Firstly, the base-learner KELMs is trained on the disjoint training subset. Then, meta-learner KELM is trained with the hidden codes of training set in base-learner KELMs that have been trained. In this paper, chaotic mapping and opposition-based learning are integrated into Sparrow search algorithm(SSA) and used it to optimize each learner. We simulate this model with measured dissolved gas analysis(DGA) data, the results show that compared with PSO and SSA, opposition-based learning sparrow search algorithm(OSSA) has better global search-ability on the optimization for the proposed model. In addition, compared with Adaboost.M1, BPNN, SVM and KELM, Meta-OSSA-KELM has a higher average accuracy (90.9% vs 78.5%, 74.0%, 76.9%, 76.9%) and a lower standard deviation (1.56×10–2 vs 4.21×10–2, 10.5×10–2, 3.7×10–2, 2.18×10–2) in simulation tests for 30 times. It is shown that the proposed model is a stable and better performance transformers fault diagnosis method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-211862