Employing data mining techniques to classify Covid-19 pandemic

Recently, researchers and clinicians have been searching for new technologies to slow down or stop COVID-19 pandemic. The utility of Data Mining (DM) algorithms to suggests new opportunities to combat the spread of the new Coronavirus. This paper suggests a comparative study on data mining approache...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 3036; no. 1
Main Authors Shanshool, Abeer M., Bouchakwa, Mariam, Amor, Ikram Amous-Ben
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 15.03.2024
Subjects
Online AccessGet full text
ISSN0094-243X
1935-0465
1551-7616
1551-7616
DOI10.1063/5.0196328

Cover

Abstract Recently, researchers and clinicians have been searching for new technologies to slow down or stop COVID-19 pandemic. The utility of Data Mining (DM) algorithms to suggests new opportunities to combat the spread of the new Coronavirus. This paper suggests a comparative study on data mining approaches to predict COVID19. We used common classification algorithms like the Support Vector Machines, Random Forest, Logistic Regression, K-Nearest Neighbor and Artificial Neural Network with Python simulation to compare it in metrics accuracy, recall, precision and AUC; results showed that Random Forest model had a 98.43% accuracy – which is a higher accuracy than many other previous studies known COVID-19 data mining algorithms.
AbstractList Recently, researchers and clinicians have been searching for new technologies to slow down or stop COVID-19 pandemic. The utility of Data Mining (DM) algorithms to suggests new opportunities to combat the spread of the new Coronavirus. This paper suggests a comparative study on data mining approaches to predict COVID19. We used common classification algorithms like the Support Vector Machines, Random Forest, Logistic Regression, K-Nearest Neighbor and Artificial Neural Network with Python simulation to compare it in metrics accuracy, recall, precision and AUC; results showed that Random Forest model had a 98.43% accuracy – which is a higher accuracy than many other previous studies known COVID-19 data mining algorithms.
Author Bouchakwa, Mariam
Shanshool, Abeer M.
Amor, Ikram Amous-Ben
Author_xml – sequence: 1
  givenname: Abeer M.
  surname: Shanshool
  fullname: Shanshool, Abeer M.
  organization: National School of Electronics and Communications, Sfax university
– sequence: 2
  givenname: Mariam
  surname: Bouchakwa
  fullname: Bouchakwa, Mariam
  email: mariam.bouchekwa@gmail.com
  organization: National School of Electronics and Communications, Sfax university
– sequence: 3
  givenname: Ikram Amous-Ben
  surname: Amor
  fullname: Amor, Ikram Amous-Ben
  email: ikram.amous@enetcom.usf.tn
  organization: Higher Institute of Applied Sciences and Technology of Sousse
BookMark eNp9j09LwzAchoNMcJse_AYFb0JnfmnSpBdBxqbCwIuCt5Dmj2a0SW06pd_ejQ28eXrfw8vD-8zQJMRgEboGvABcFndsgaEqCyLO0BQYg5yXUE7QFOOK5oQW7xdoltIWY1JxLqboftV2TRx9-MiMGlTW-nDog9WfwX_tbMqGmOlGpeTdmC3jtzc5VFmngrGt15fo3Kkm2atTztHbevW6fMo3L4_Py4dN3kEpRG54aTQx2tC64MzV1jgAxyhW3FBlBLPEcqWcAE2h1ooC5gBGs5pRYpkr5uj2yN2FTo0_qmlk1_tW9aMELA_mksmT-X58cxx3fTwoDHIbd33Y_5OkYpxxgQv8h0zaD2rwMfyD_AUeqGZ7
CODEN APCPCS
ContentType Journal Article
Conference Proceeding
Copyright Author(s)
2024 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published by AIP Publishing.
DBID 8FD
H8D
L7M
ADTOC
UNPAY
DOI 10.1063/5.0196328
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1551-7616
Editor Obaid, Ahmed J.
Abid, Salah Hamza
EIdi, Jaafer Hmood
Editor_xml – sequence: 1
  givenname: Ahmed J.
  surname: Obaid
  fullname: Obaid, Ahmed J.
  organization: University of Kufa
– sequence: 2
  givenname: Salah Hamza
  surname: Abid
  fullname: Abid, Salah Hamza
  organization: Mustansiriyah University
– sequence: 3
  givenname: Jaafer Hmood
  surname: EIdi
  fullname: EIdi, Jaafer Hmood
  organization: Mustansiriyah University
ExternalDocumentID 10.1063/5.0196328
acp
Genre Conference Proceeding
GroupedDBID -~X
23M
5GY
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACZLF
ADCTM
AEJMO
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
F5P
FDOHQ
FFFMQ
HAM
M71
M73
RIP
RQS
SJN
~02
8FD
ABJGX
ADMLS
H8D
L7M
0ZJ
ADTOC
J23
NEUPN
RDFOP
UNPAY
ID FETCH-LOGICAL-p1688-d76dc2dcd4b375fbedf11f540a7d4ad85e2e7aaf81c41bca410711dc5b542e5f3
IEDL.DBID UNPAY
ISSN 0094-243X
1935-0465
1551-7616
IngestDate Tue Aug 19 23:17:41 EDT 2025
Sun Jun 29 15:33:03 EDT 2025
Fri Jun 21 00:11:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 0094-243X/2024/3036/030001/13/$30.00
Published by AIP Publishing.
LinkModel DirectLink
MeetingName 4TH INTERNATIONAL CONFERENCE ON PURE SCIENCES: ICPS2023
MergedId FETCHMERGED-LOGICAL-p1688-d76dc2dcd4b375fbedf11f540a7d4ad85e2e7aaf81c41bca410711dc5b542e5f3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0196328/19796900/030001_1_5.0196328.pdf
PQID 2957578030
PQPubID 2050672
PageCount 13
ParticipantIDs scitation_primary_10_1063_5_0196328
unpaywall_primary_10_1063_5_0196328
proquest_journals_2957578030
PublicationCentury 2000
PublicationDate 20240315
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 20240315
  day: 15
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP conference proceedings
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Huyut (c17) 2022
Rajaraman, Siegelman, Alderson, Folio, Folio, Antani (c14) 2020
Simsek, Kursuncu, Kibis, AnisAbdellatif, Dag (c22) 2020
Muhammad, Islam, Usman, Ayon (c12) 2020
Chaurasia, Pal (c11) 2020
Sear, Velásquez, Leahy, Restrepo, El Oud, Gabriel, Lupu, Johnson (c24) 2020
Shalev-Shwartz, Singer, Srebro, Cotter (c28) 2011
Akhtar (c16) 2021
Chamola, Hassija, Gupta, Guizani (c4) 2020
Tuli, Tuli, Tuli, Gill (c13) 2020
Ribeiro, Pires, de Moura Oliveira (c19) 2019
Jamshidi, Lalbakhsh, Talla, Peroutka, Hadjilooei, Lalbakhsh, Jamshidi, La Spada, Mirmozafari, Dehghani, Sabet (c15) 2020
Pham (c30) 2021
Keleş (c18) 2019
Kiruthika, Raja, Jaichandran, Priyadharshini (c10) 2019
Rahman, Islam, Manik, Hossen, Al-Rakhami (c9) 2021
Golhani, Balasundram, Vadamalai, Pradhan (c27) 2018
Bergstra, Komer, Eliasmith, Yamins, Cox (c25) 2015
Gao, Mei, Piccialli, Cuomo, Tu, Huo (c29) 2020
Dairi, Harrou, Zeroual, Hittawe, Sun (c8) 2021
Abeer, Saeed, Rafash, Salman (c5) 2022
Muhammad, Algehyne, Usman, Ahmad, Chakraborty, Mohammed (c7) 2021
Jonathan, Anjali (c31) 2021
Breiman (c26) 2001
Kwekha-Rashid, Abduljabbar, Alhayani (c2) 2021
Alabrah, Alawadh, Okon, Meraj, Rauf (c6) 2022
Amar, Taha, Mohamed (c3) 2020
References_xml – year: 2022
  ident: c17
  article-title: Automatic Detection of Severely and Mildly Infected COVID-19 Patients with Supervised Machine Learning Models
– start-page: 149
  year: 2019
  ident: c18
  article-title: Breast cancer prediction and detection using data mining classification algorithms: a comparative study
– start-page: 3
  year: 2011
  ident: c28
  article-title: Pegasos: Primal estimated sub-gradient solver for svm
– start-page: 467
  year: 2022
  ident: c6
  article-title: Gulf countries’ citizens’ acceptance of COVID-19 vaccines—A machine learning approach
– start-page: 014008
  year: 2015
  ident: c25
  article-title: Hyperopt: a python library for model selection and hyperparameter optimization
– start-page: 100254
  year: 2020
  ident: c29
  article-title: Julia language in machine learning: Algorithms, applications, and open issues
– start-page: 1
  year: 2020
  ident: c11
  article-title: Application of machine learning time series analysis for prediction COVID-19 pandemic
– start-page: 115041
  year: 2020
  ident: c14
  article-title: Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-rays
– start-page: 622
  year: 2020
  ident: c3
  article-title: Prediction of the final size for COVID-19 epidemic using machine learning: A case study of Egypt
– start-page: 1
  year: 2019
  ident: c19
  article-title: Breast Cancer Diagnosis using a Neural Network
  publication-title: 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG)
– start-page: 91886
  year: 2020
  ident: c24
  article-title: Quantifying COVID-19 content in the online health opinion war using machine learning
– start-page: 354
  year: 2018
  ident: c27
  article-title: A review of neural networks in plant disease detection using hyperspectral data
– start-page: 112863
  year: 2020
  ident: c22
  article-title: A hybrid data mining approach for identifying the temporal effects of variables associated with breast cancer survival
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2020
  ident: c12
  article-title: Predictive data mining models for novel coronavirus (COVID-19) infected patients’ recovery
– start-page: 5
  year: 2001
  ident: c26
  article-title: Random forests
– start-page: 90225
  year: 2020
  ident: c4
  article-title: A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact
– start-page: 1
  year: 2021
  ident: c2
  article-title: Coronavirus disease (COVID-19) cases analysis using machine-learning applications
– start-page: 1
  year: 2021
  ident: c7
  article-title: Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset
– start-page: 65
  year: 2021
  ident: c16
  article-title: COVID-19 detection from CBC using machine learning techniques
– start-page: 109581
  year: 2020
  ident: c15
  article-title: Artificial intelligence and COVID-19: deep learning approaches for diagnosis and treatment
– start-page: 1
  year: 2021
  ident: c30
  article-title: Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning?
– start-page: 431
  year: 2022
  ident: c5
  article-title: A review study on machine learning approaches on coronavirus big data
– start-page: 103791
  year: 2021
  ident: c8
  article-title: Comparative study of machine learning methods for COVID-19 transmission forecasting
– start-page: 2277
  year: 2019
  ident: c10
  article-title: Detection and Classification of Paddy Crop Disease using Deep Learning Techniques
– start-page: 100222
  year: 2020
  ident: c13
  article-title: Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing
– start-page: 73
  year: 2021
  ident: c31
  article-title: Analysis of Influencing Risk Factors for Covid-19 Infection Based on the Predictive Models Using Machine Learning Algorithms
– start-page: 1
  year: 2021
  ident: c9
  article-title: Machine learning approaches for tackling novel coronavirus (COVID-19) pandemic
SSID ssj0029778
Score 2.3515449
Snippet Recently, researchers and clinicians have been searching for new technologies to slow down or stop COVID-19 pandemic. The utility of Data Mining (DM)...
SourceID unpaywall
proquest
scitation
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Comparative studies
Data mining
New technology
Support vector machines
Title Employing data mining techniques to classify Covid-19 pandemic
URI http://dx.doi.org/10.1063/5.0196328
https://www.proquest.com/docview/2957578030
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0196328/19796900/030001_1_5.0196328.pdf
UnpaywallVersion publishedVersion
Volume 3036
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1551-7616
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0029778
  issn: 0094-243X
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA7aIt58VVRqCeg1rcnm0V4EUUsRFUEL9bTksYFiWxfbIvXiX3eyu65VELx4WFhIls1jhnyTmfkGoWPrZMS1jIiS2hPQREu0MI74tmfKMTC6RMh3vrmVvT6_GohBUao05MLAIKZNPUxziuBh2tIWnnwRSer8F-OAjFqBcRMEiLVbtKM6YOeBhR8F1BLTuGxrwlerqCoFYPUKqvZv784ec2pKThiPBhmhqqAw2KxOKgAaEeIdxScN0fJ_vsHQdTijcnc5vM8nqV686tFo6XTqbqD3cl5ZUMpTcz4zTfv2g_Lx_ya-iWpfmYP4rjwTt9BKMtlGa1mYqZ3uoNO8wDA04RCaisdZeQpcEslO8ewZ2wDoh36Bz0OSIKEdnIab7vHQ1lC_e_lw3iNFBQeSUgkq6JR0ljnruImU8CZxnlIPIFErx7Vri4QlSmvfppZTYzUHY5RSZ4URnCXCR7uoMnmeJHsIe8WlpV4FRyPXIE-GAZqymnmWaG5O9lH9c2viQg2nMeuIwNcPa7OPjsrtitOcyCPOHPAyikVcLBn0Kjfy914Hf-pVR5XZyzw5BMwyMw1UPbu4ub5vFAL4AYjN4mk
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF60Rbz5qlhRWdDrpu5mH81FELEUQenBQj2FfWShqDXYFNGLf93ZJMYqCF48BAK7IfuYYb_ZmfkGoRPrZMy1jImS2hPQREu0MI74vmfKMTC6RMh3vr6RwzG_mohJXao05MLAIOaRnuYVRfA072kLT7WIJHf-i3FAxr3AuAkCxPo9mqgE7Dyw8OOAWlKaNm0RfLWK2lIAVm-h9vhmdH5XUVNywng8KQlVBYXBlnVSAdCIEO8oPmmIlv_zDYauwxlVucvhfTHL9euLfnhYOp0GG-i9mVcZlHIfLQoT2bcflI__N_FN1PnKHMSj5kzcQivZbButlWGmdr6DzqoCw9CEQ2gqfizLU-CGSHaOiydsA6Cf-ld8EZIECU1wHm66H6e2g8aDy9uLIakrOJCcSlBBp6SzzFnHTayEN5nzlHoAiVo5rl1fZCxTWvs-tZwaqzkYo5Q6K4zgLBM-3kWt2dMs20PYKy4t9So4GrkGeTIM0JTVzLNMc3PaRQefW5PWajhPWSICXz-sTRcdN9uV5hWRR1o64GWcirReMujVbOTvvfb_1OsAtYrnRXYImKUwR7XgfQB9Z-DV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Employing+data+mining+techniques+to+classify+Covid-19+pandemic&rft.date=2024-03-15&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=3036&rft.issue=1&rft_id=info:doi/10.1063%2F5.0196328&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon