Employing data mining techniques to classify Covid-19 pandemic
Recently, researchers and clinicians have been searching for new technologies to slow down or stop COVID-19 pandemic. The utility of Data Mining (DM) algorithms to suggests new opportunities to combat the spread of the new Coronavirus. This paper suggests a comparative study on data mining approache...
Saved in:
| Published in | AIP conference proceedings Vol. 3036; no. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article Conference Proceeding |
| Language | English |
| Published |
Melville
American Institute of Physics
15.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-243X 1935-0465 1551-7616 1551-7616 |
| DOI | 10.1063/5.0196328 |
Cover
| Summary: | Recently, researchers and clinicians have been searching for new technologies to slow down or stop COVID-19 pandemic. The utility of Data Mining (DM) algorithms to suggests new opportunities to combat the spread of the new Coronavirus. This paper suggests a comparative study on data mining approaches to predict COVID19. We used common classification algorithms like the Support Vector Machines, Random Forest, Logistic Regression, K-Nearest Neighbor and Artificial Neural Network with Python simulation to compare it in metrics accuracy, recall, precision and AUC; results showed that Random Forest model had a 98.43% accuracy – which is a higher accuracy than many other previous studies known COVID-19 data mining algorithms. |
|---|---|
| Bibliography: | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
| ISSN: | 0094-243X 1935-0465 1551-7616 1551-7616 |
| DOI: | 10.1063/5.0196328 |