CheXNet for the Evidence of Covid-19 Using 2.3K Positive Chest X-rays
CheXNet is not a surprise for Deep Learning (DL) community as it was primarily designed for radiologist-level pneumonia detection in Chest X-rays (CXRs). In this paper, we study CheXNet to analyze CXRs to detect the evidence of Covid-19. On a dataset of size 4, 600 CXRs (2, 300 Covid-19 positive cas...
Saved in:
Published in | Recent Trends in Image Processing and Pattern Recognition Vol. 1576; pp. 33 - 41 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2022
Springer International Publishing |
Series | Communications in Computer and Information Science |
Subjects | |
Online Access | Get full text |
ISBN | 3031070046 9783031070044 |
ISSN | 1865-0929 1865-0937 |
DOI | 10.1007/978-3-031-07005-1_4 |
Cover
Summary: | CheXNet is not a surprise for Deep Learning (DL) community as it was primarily designed for radiologist-level pneumonia detection in Chest X-rays (CXRs). In this paper, we study CheXNet to analyze CXRs to detect the evidence of Covid-19. On a dataset of size 4, 600 CXRs (2, 300 Covid-19 positive cases and 2, 300 non-Covid cases (Healthy and Pneumonia cases)) and with k(=5) fold cross-validation technique, we achieve the following performance scores: accuracy of 0.98, AUC of 0.99, specificity of 0.98 and sensitivity of 0.99. On such a large dataset, our results can be compared with state-of-the-art results. |
---|---|
Bibliography: | Authors Credit Statement. Authors contributed equally to the paper. |
ISBN: | 3031070046 9783031070044 |
ISSN: | 1865-0929 1865-0937 |
DOI: | 10.1007/978-3-031-07005-1_4 |