In Situ Formation of Multiple Schottky Barriers in a Ti3C2 MXene Film and its Application in Highly Sensitive Gas Sensors
The main gas‐sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas‐sensing performances of 2D materials originate from SB modula...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 40 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202003998 |
Cover
Summary: | The main gas‐sensing mechanisms of 2D materials are surface charge transfer by analytes and Schottky barrier (SB) modulation at the interface between the metallic and semiconducting surfaces. In particular, dramatic differences in the gas‐sensing performances of 2D materials originate from SB modulation. However, SB sites typically exist only at the interface between the semiconducting channel material and the metal electrode. Herein, in situ formed multiple SBs in a single gas‐sensing channel are demonstrated, which are derived from the heterojunction of metallic Ti3C2 and semiconducting TiO2. In stark contrast with previous techniques, edge‐oxidized Ti3C2 flakes are synthesized by solution oxidation, allowing the uniform formation of TiO2 crystals on all flakes that comprise the gas sensing channel. Oxidized colloidal solutions are subjected to vacuum filtration to automatically form SB sites at the multiple inter‐flake junctions in both the outer surface and inner bulk regions of the film. The TiO2/Ti3C2 composite sensor shows 13.7 times higher NO2 sensitivity as compared with pristine Ti3C2 MXene, while the responses of the reducing gases are almost unchanged. The results suggest a new strategy for improving gas‐sensing performance by maximizing the density of SB sites through a simple method.
Ti3C2 MXene thin films with in situ formed multiple Schottky barriers (SBs) are synthesized by employing a solution‐based oxidation method, selectively forming TiO2 nanocrystals at the edge sites of each individual MXene sheet. Gas sensors based on the TiO2/Ti3C2 heterostructure show a highly enhanced gas response toward nitrogen dioxide gas resulting from SB modulation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202003998 |