Easy precision matrix ML based algorithm for student academic performance improvement

Easy precision is obtained using a Machine Learning algorithm in student’s academic performance analysis. If the semester result for the student is above certain grade, then the student obtained good academic result. On the other hand, if the test for the student is below grade 3 then he or she need...

Full description

Saved in:
Bibliographic Details
Published inAIP conference proceedings Vol. 2831; no. 1
Main Authors Balamurugan, R., Nirmala, K.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Melville American Institute of Physics 20.09.2023
Subjects
Online AccessGet full text
ISSN0094-243X
1551-7616
DOI10.1063/5.0166234

Cover

Abstract Easy precision is obtained using a Machine Learning algorithm in student’s academic performance analysis. If the semester result for the student is above certain grade, then the student obtained good academic result. On the other hand, if the test for the student is below grade 3 then he or she needs some training or counselling. To improve the students performance and to achieve good grade can be carried out by a machine learning algorithm. In the study of a student’s achievement, a Machine Learning method provides easy precision. If a student’s semester grade is above a given level, the student has done well academically. If the student’s test score is less than a grade three, he or she will need some training or counselling. A machine learning algorithm is used to improve a student’s performance and help them to get a good mark. Five methods were utilised to evaluate student performance in this paper: Random Forest algorithm, SVC (Space Vector Machine), decision tree, logistic regression, and Nave Bayes. In comparison to other methods, Decision Tree has a high level of accuracy. It is evident from this research that we might simply train the pupils in the objective aspect by applying machine learning methods.
AbstractList Easy precision is obtained using a Machine Learning algorithm in student’s academic performance analysis. If the semester result for the student is above certain grade, then the student obtained good academic result. On the other hand, if the test for the student is below grade 3 then he or she needs some training or counselling. To improve the students performance and to achieve good grade can be carried out by a machine learning algorithm. In the study of a student’s achievement, a Machine Learning method provides easy precision. If a student’s semester grade is above a given level, the student has done well academically. If the student’s test score is less than a grade three, he or she will need some training or counselling. A machine learning algorithm is used to improve a student’s performance and help them to get a good mark. Five methods were utilised to evaluate student performance in this paper: Random Forest algorithm, SVC (Space Vector Machine), decision tree, logistic regression, and Nave Bayes. In comparison to other methods, Decision Tree has a high level of accuracy. It is evident from this research that we might simply train the pupils in the objective aspect by applying machine learning methods.
Author Nirmala, K.
Balamurugan, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Balamurugan
  fullname: Balamurugan, R.
  organization: Bharathiar University
– sequence: 2
  givenname: K.
  surname: Nirmala
  fullname: Nirmala, K.
  organization: Quid-e-Milleth College for Women
BookMark eNotkM1KAzEAhINUsK0efIOAN2Fr_jc5SqlVqHix4C1kk6ymNLtrkop9e1fa08DwMcPMDEy6vvMA3GK0wEjQB75AWAhC2QWYYs5xVQssJmCKkGIVYfTjCsxy3iFEVF3LKdiuTD7CIXkbcug7GE1J4Re-bmBjsnfQ7D_7FMpXhG2fYC4H57sCjTXOx2Dh4NPoR9NZD0McUv_j4whcg8vW7LO_OescbJ9W78vnavO2flk-bqoBU1oqL7kUDlNHuLfSI4JsSxBtVKukdYqgpkGybgyvlWdYsrp1FAvDFK0dJkbSObg75Y7N3wefi971h9SNlZpIIZhiBOGRuj9R2YZiyjhTDylEk44aI_1_m-b6fBv9AxFdYPc
CODEN APCPCS
ContentType Journal Article
Conference Proceeding
Copyright AIP Publishing LLC
2023 AIP Publishing LLC.
Copyright_xml – notice: AIP Publishing LLC
– notice: 2023 AIP Publishing LLC.
DBID 8FD
H8D
L7M
DOI 10.1063/5.0166234
DatabaseName Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1551-7616
Editor Ganesan, L.
Vijayalakshmi, K.
Rajakarunakaran, S.
Editor_xml – sequence: 1
  givenname: L.
  surname: Ganesan
  fullname: Ganesan, L.
  organization: Ramco Institute of Technology
– sequence: 2
  givenname: S.
  surname: Rajakarunakaran
  fullname: Rajakarunakaran, S.
  organization: Ramco Institute of Technology
– sequence: 3
  givenname: K.
  surname: Vijayalakshmi
  fullname: Vijayalakshmi, K.
  organization: Ramco Institute of Technology
ExternalDocumentID acp
Genre Conference Proceeding
GroupedDBID -~X
23M
5GY
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACZLF
ADCTM
AEJMO
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
F5P
FDOHQ
FFFMQ
HAM
M71
M73
RIP
RQS
SJN
~02
8FD
ABJGX
ADMLS
H8D
L7M
ID FETCH-LOGICAL-p133t-e8586d13d25ec8e020cf203b9f98cd920bb087ba579e41847fd316a4937d12a83
ISSN 0094-243X
IngestDate Sun Jun 29 15:47:52 EDT 2025
Fri Jun 21 00:17:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MeetingName INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES AND APPLICATIONS (ICSTA 2022)
MergedId FETCHMERGED-LOGICAL-p133t-e8586d13d25ec8e020cf203b9f98cd920bb087ba579e41847fd316a4937d12a83
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
PQID 2866494201
PQPubID 2050672
PageCount 5
ParticipantIDs proquest_journals_2866494201
scitation_primary_10_1063_5_0166234
PublicationCentury 2000
PublicationDate 20230920
PublicationDateYYYYMMDD 2023-09-20
PublicationDate_xml – month: 09
  year: 2023
  text: 20230920
  day: 20
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP conference proceedings
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Romero, Ventura (c14) 2010; 40
Agrawal, Pandya (c2) 2015; 3
Topping, Keith (c9) 2000; 25
Siemens, Long (c11) 2011; 46
Kollar, Fischer (c10) 2010; 20
References_xml – volume: 25
  start-page: 149
  year: 2000
  ident: c9
  article-title: Formative peer assessment of academic writing between postgraduate learners
  publication-title: Assessment & evaluation in higher education
– volume: 40
  start-page: 601
  year: 2010
  ident: c14
  article-title: Educational data mining: A review of the state of the art
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– volume: 20
  start-page: 344
  year: 2010
  ident: c10
  article-title: Peer assessment as collaborative learning: A cognitive perspective
  publication-title: Learning and Instruction
– volume: 46
  start-page: 31
  year: 2011
  ident: c11
  article-title: Penetrating the fog: Analytics in learning and education
  publication-title: EDUCAUSE Review
– volume: 3
  year: 2015
  ident: c2
  article-title: Survey of papers for Data Mining with Neural Networks to Predict the Student’s Academic Achievements
  publication-title: International Journal of Computer Science Trends and Technology (IJCST)
SSID ssj0029778
Score 2.3355827
Snippet Easy precision is obtained using a Machine Learning algorithm in student’s academic performance analysis. If the semester result for the student is above...
SourceID proquest
scitation
SourceType Aggregation Database
Publisher
SubjectTerms Academic achievement
Algorithms
Decision trees
Machine learning
Performance evaluation
Training
Title Easy precision matrix ML based algorithm for student academic performance improvement
URI http://dx.doi.org/10.1063/5.0166234
https://www.proquest.com/docview/2866494201
Volume 2831
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1551-7616
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0029778
  issn: 0094-243X
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9RAFIcH3SL65qVitcqA4ksY3cwtk8eiW6pka8Fd2Lcwt9SC3a7dCOpf75lkcqktgr6EJYTscr7ZOb-ZOReEXkknRJbZnAjGNeFKcmKMyYitqtTmnjnVVLyZH8ujJf-4EquhpV-TXVKbN_bXjXkl_0MV7gHXkCX7D2T7l8IN-Ax84QqE4Xqd8Y2u5uDDSQgc74rFDs9sx2Nhprc_QzWAtp1Och7K8v9I5kUSfJhL9NfTi8uz-st5E3O4batdJrqLnN-McgvOmj2IIVwm7hdQFoIb6HQg3B0EXQlGaMJN7Xh7EJZ9hPKmVy_4iTg5ipRkss2N7GZPkCfpn-Pk2rQMOghsGQqkSpBbfPA93Xn78afycFkU5WK2WrzefCOhK1g4PY8tUm6jHcpgbpqgnYP38-Jzv6QG9dr62vhru9pRkr3tv-3K2uEuCIs2xmEkIxb30e6QYIlPelYP0C2_fojuRPM8QssADPfAcAsMzwvcAMM9MAxgcASGO2B4BAyPgO2i5eFs8e6IxP4XZJMyVhOvhJIuZY4Kb5UHYW8rOmUmr3JlXU6nxkxVZrTIcs9hpZ5VjqVSc1CcLqVascdosr5Y-ycIW6FpBX87m2oLCoRpZbXWLq-so5Vn2R7a72xUxgG-LamSkuccJOIeetnbrdy0ZVDKJnxBslKU0dBP__6SZ-jeMB730aS-_O6fg6KrzYuI9Tdm3lJP
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=AIP+conference+proceedings&rft.atitle=Easy+precision+matrix+ML+based+algorithm+for+student+academic+performance+improvement&rft.date=2023-09-20&rft.pub=American+Institute+of+Physics&rft.issn=0094-243X&rft.eissn=1551-7616&rft.volume=2831&rft.issue=1&rft_id=info:doi/10.1063%2F5.0166234&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-243X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-243X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-243X&client=summon