基于人工神经网络模型的混流式水轮机转轮多目标优化

【目的】探究一种同时提升混流式水轮机运行效率、空化性能及运行稳定性的优化方法,为混流式水轮机转轮的多目标优化提供技术途径。【方法】以转轮叶片进出口安放角、安装角为优化变量,通过对叶片几何参数随机离散抽样获取样本数据库,基于CFD数值计算获取各样本的性能参数,进而建立同时考虑混流式水轮机转轮效率、出口旋流数以及空化系数的多目标函数;基于人工神经网络建立优化变量与多目标函数的映射关系,最后采用遗传算法对转轮叶片的18个几何参数进行全局寻优,并对优化前后的转轮叶片性能进行对比分析。【结果】在导叶开度为112°且运行水头分别为160、175、180 m的3个工况下,优化后的转轮效率相较优化前分别提高了...

Full description

Saved in:
Bibliographic Details
Published inGuanʻgai paishui xuebao Vol. 42; no. 9; pp. 46 - 52
Main Authors WANG, Rongtao, LAI Xide, CHEN, Xiaoming
Format Journal Article
LanguageChinese
Published Xinxiang City Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage 01.01.2023
西华大学能源与动力工程学院,成都 610039
Subjects
Online AccessGet full text
ISSN1672-3317
DOI10.13522/j.cnki.ggps.2022588

Cover

More Information
Summary:【目的】探究一种同时提升混流式水轮机运行效率、空化性能及运行稳定性的优化方法,为混流式水轮机转轮的多目标优化提供技术途径。【方法】以转轮叶片进出口安放角、安装角为优化变量,通过对叶片几何参数随机离散抽样获取样本数据库,基于CFD数值计算获取各样本的性能参数,进而建立同时考虑混流式水轮机转轮效率、出口旋流数以及空化系数的多目标函数;基于人工神经网络建立优化变量与多目标函数的映射关系,最后采用遗传算法对转轮叶片的18个几何参数进行全局寻优,并对优化前后的转轮叶片性能进行对比分析。【结果】在导叶开度为112°且运行水头分别为160、175、180 m的3个工况下,优化后的转轮效率相较优化前分别提高了0.22%、0.56%、0.60%;叶片压力分布情况得到有效改善;转轮无叶区与尾水管锥管段处压力脉动幅值显著降低。【结论】叶片进口安放角的优化程度越大,混流式水轮机综合性能的提升幅度越大。
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1672-3317
DOI:10.13522/j.cnki.ggps.2022588