顾及缺失值的因果图时空预测网络

时空预测是地理时空大数据挖掘的基础研究命题。目前,多种模型用于预测未知系统的时空状态。然而,存在的大多数预测模型仅在没有缺失数据的时空数据集上进行测试,忽略了缺失值对预测结果的影响。在真实场景中,由于传感器或网络传输故障,数据缺失是一个不容忽视的问题。鉴于此,本文提出了一种顾及缺失值的因果图卷积网络(causal graph convolutional network considering missing values,Causal-GCNM)模型用于时空预测。Causal-GCNM模型可以自动捕捉时空数据中的缺失模式,使得Causal-GCNM模型在不需要借助额外插值算法的前提下,可以直接...

Full description

Saved in:
Bibliographic Details
Published inCe hui xue bao Vol. 52; no. 5; pp. 818 - 830
Main Authors 王培晓, 张彤, 聂士超, 杨瑾萱, 王天骄
Format Journal Article
LanguageChinese
English
Published Beijing Surveying and Mapping Press 20.05.2023
武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079%武汉大学资源与环境科学学院,湖北武汉430079%武汉大学遥感信息工程学院,湖北武汉430079
Subjects
Online AccessGet full text
ISSN1001-1595
1001-1595
DOI10.11947/j.AGCS.2023.20220021

Cover

More Information
Summary:时空预测是地理时空大数据挖掘的基础研究命题。目前,多种模型用于预测未知系统的时空状态。然而,存在的大多数预测模型仅在没有缺失数据的时空数据集上进行测试,忽略了缺失值对预测结果的影响。在真实场景中,由于传感器或网络传输故障,数据缺失是一个不容忽视的问题。鉴于此,本文提出了一种顾及缺失值的因果图卷积网络(causal graph convolutional network considering missing values,Causal-GCNM)模型用于时空预测。Causal-GCNM模型可以自动捕捉时空数据中的缺失模式,使得Causal-GCNM模型在不需要借助额外插值算法的前提下,可以直接完成时空预测任务。本文提出的模型在3种真实的时空数据集(交通流数据集、PM2.5监测数据集及气温监测数据集)得到了验证。试验结果表明,Causal-GCNM模型在4种缺失条件(20%随机缺失、20%块状缺失、40%随机缺失及40%块状缺失)下仍然具有较好的预测性能,并在预测精度和计算效率两类指标上优于10种存在的基线方法。
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1001-1595
1001-1595
DOI:10.11947/j.AGCS.2023.20220021