Efficient delivery of anticancer drugs using functionalized-Ag-decorated Fe 3 O 4 @SiO 2 nanocarrier with folic acid and β-cyclodextrin

Nanocarrier surface functionalization has been widely regarded as a promising approach for achieving precise and targeted drug delivery systems. In this work, the fabrication of functionalized-Ag-decorated Fe O @SiO (Fe O @SiO -Ag) nanocarriers with folic acid (FA) and β-cyclodextrin (BCD) exhibit a...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1868; no. 8; p. 130643
Main Authors Romdoni, Yoga, Prasedya, Eka Sunarwidhi, Kadja, Grandprix T M, Kitamoto, Yoshitaka, Khalil, Munawar
Format Journal Article
LanguageEnglish
Published Netherlands 01.08.2024
Subjects
Online AccessGet full text
ISSN1872-8006
DOI10.1016/j.bbagen.2024.130643

Cover

More Information
Summary:Nanocarrier surface functionalization has been widely regarded as a promising approach for achieving precise and targeted drug delivery systems. In this work, the fabrication of functionalized-Ag-decorated Fe O @SiO (Fe O @SiO -Ag) nanocarriers with folic acid (FA) and β-cyclodextrin (BCD) exhibit a remarkable capacity for delivering two types of anticancer drugs, i.e., doxorubicin (DOX) and epirubicin (EPI), into cancer cells. The effective functionalization of Fe O @SiO -Ag nanoparticles has been achieved through the use of cysteine (Cys) as an anchor for attaching FA and BCD via EDC-NHS coupling and Steglich esterification methods, respectively. The findings indicate that surface functionalization had no significant impact on the physicochemical characteristics of the nanoparticles. However, it notably affected DOX and EPI loading and release efficiency. The electrostatic conjugation of DOX/EPI onto the surface of Fe O @SiO -Ag/Cys/FA and Fe O @SiO -Ag/Cys/BCD exhibited maximum loading efficiency of 50-60% at concentration ratio of DOX/EPI to nanoparticles of 1:14. These nanocarriers also achieved an 40-47% DOX/EPI release over 36 days. Furthermore, the drug-loaded functionalized-nanocarrier showed cytotoxic effects on SK-MEL-2 cells, as demonstrated by an in vitro MTT assay. This suggests that the as-prepared functionalized-nanoparticles have promise as a carrier for the efficient anticancer drugs.
ISSN:1872-8006
DOI:10.1016/j.bbagen.2024.130643