MAV 환경에서의 CNN 기반 듀얼 채널 음향 향상 기법
Recently, as the industrial scope of multi-rotor unmanned aerial vehicles(UAV) is greatly expanded, the demands for data collection, processing, and analysis using UAV are also increasing. However, the acoustic data collected by using the UAV is greatly corrupted by the UAV's motor noise and wi...
Saved in:
Published in | 한국정보통신학회논문지 Vol. 23; no. 12; pp. 1506 - 1513 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Korean |
Published |
한국정보통신학회
2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2234-4772 2288-4165 |
DOI | 10.6109/jkiice.2019.23.12.1506 |
Cover
Summary: | Recently, as the industrial scope of multi-rotor unmanned aerial vehicles(UAV) is greatly expanded, the demands for data collection, processing, and analysis using UAV are also increasing. However, the acoustic data collected by using the UAV is greatly corrupted by the UAV's motor noise and wind noise, which makes it difficult to process and analyze the acoustic data. Therefore, we have studied a method to enhance the target sound from the acoustic signal received through microphones connected to UAV. In this paper, we have extended the densely connected dilated convolutional network, one of the existing single channel acoustic enhancement technique, to consider the inter-channel characteristics of the acoustic signal. As a result, the extended model performed better than the existed model in all evaluation measures such as SDR, PESQ, and STOI. 최근 드론과 같은 멀티로터 UAV(Unmanned Aerial Vehicle, 무인항공기)의 산업 범위가 크게 확대됨에 따라, UAV를 활용한 데이터의 수집 및 처리, 분석에 대한 요구도 함께 증가하고 있다. 그러나 UAV를 이용해서 수집된 음향 데이터는 UAV의 모터 소음과 바람 소리 등으로 크게 손상되어, 음향 데이터의 처리 및 분석이 어렵다는 단점이 있다. 따라서 본 논문에서는 UAV에 연결된 마이크를 통해 수신된 음향 신호로부터 목표 음향 신호의 품질을 향상시킬 수 있는 방법에 대해 연구하였다. 본 논문에서는 기존의 단일 채널 음향 향상 기술 중 하나인 densely connected dilated convolutional network를 음향 신호의 채널 간 특성을 반영할 수 있도록 확장하였으며, 그 결과 SDR, PESQ, STOI과 같은 평가 지표에서 기존 연구 대비 좋은 성능을 보였다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201905653789164 http://jkiice.org |
ISSN: | 2234-4772 2288-4165 |
DOI: | 10.6109/jkiice.2019.23.12.1506 |