흉부 X-ray 기반 딥 러닝 손실함수 성능 비교 · 분석

Artificial intelligence is being applied in various industrial fields to the development of the fourth industry and the construction of high-performance computing environments. In the medical field, deep learning learning such as cancer, COVID-19, and bone age measurement was performed using medical...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 25; no. 8; pp. 1046 - 1052
Main Authors 서진범(Jin-Beom Seo), 조영복(Young-Bok Cho)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2021
Subjects
Online AccessGet full text
ISSN2234-4772
2288-4165
DOI10.6109/jkiice.2021.25.8.1046

Cover

More Information
Summary:Artificial intelligence is being applied in various industrial fields to the development of the fourth industry and the construction of high-performance computing environments. In the medical field, deep learning learning such as cancer, COVID-19, and bone age measurement was performed using medical images such as X-Ray, MRI, and PET and clinical data. In addition, ICT medical fusion technology is being researched by applying smart medical devices, IoT devices and deep learning algorithms. Among these techniques, medical image-based deep learning learning requires accurate finding of medical image biomarkers, minimal loss rate and high accuracy. Therefore, in this paper, we would like to compare and analyze the performance of the Cross-Entropy function used in the image classification algorithm of the loss function that derives the loss rate in the chest X-Ray image-based deep learning learning process. 4차 산업의 발전과 고성능의 컴퓨팅 환경 구축으로 다양한 산업분야에서 인공지능이 적용되고 있다. 의료분야에서는 X-Ray, MRI, PET 등의 의료 영상 및 임상 자료를 이용하여 암, COVID-19, 골 연령 측정 등의 딥 러닝 학습이 진행되었다. 또한 스마트 의료기기, IoT 디바이스와 딥 러닝 알고리즘을 적용하여 ICT 의료 융합 기술 등이 연구되고 있다. 이러한 기술 중 의료 영상 기반 딥 러닝 학습은 의료 영상의 바이오마커를 정확히 찾아내고, 최소한의 손실률과 높은 정확도가 필요하다. 따라서 본 논문은 흉부 X-Ray 이미지 기반 딥 러닝 학습 과정에서 손실률을 도출하는 손실 함수 중 영상분류 알고리즘에서 사용되는 Cross-Entropy 함수들의 성능을 비교·분석하고자 한다.
Bibliography:KISTI1.1003/JNL.JAKO202125240402705
http://jkiice.org
ISSN:2234-4772
2288-4165
DOI:10.6109/jkiice.2021.25.8.1046