온라인 소셜 네트워크 생성 모델
In this study we developed artificial network generation model, which can generate on-line social network. The suggested model can represent not only scale-free and small-world properties, but also can produce networks with various values of topological characteristics through controlling two input...
Saved in:
Published in | 한국정보통신학회논문지 Vol. 24; no. 7; pp. 914 - 924 |
---|---|
Main Author | |
Format | Journal Article |
Language | Korean |
Published |
한국정보통신학회
2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2234-4772 2288-4165 |
DOI | 10.6109/jkiice.2020.24.7.914 |
Cover
Summary: | In this study we developed artificial network generation model, which can generate on-line social network. The suggested model can represent not only scale-free and small-world properties, but also can produce networks with various values of topological characteristics through controlling two input parameters. For this purpose, two parameter K and P are introduced, K for controlling the strength of preferential attachment and P for controlling clustering coefficient. It is found out on-line social network can be generated with the combinations of K(0~10) and P(0.3~0.5) or K=0 and P=0.9. Under these combinations of P and K small-world and scale-free properties are well represented. Node degree distribution follows power-law. Clustering coefficients are between 0.130 and 0.238, and average shortest path distance between 5.641 and 5.985. It is also found that on-line social network properties are maintained as network node size increases from 5,000 to 10,000. 본 연구에서는 소셜 네트워크를 생성 할 수 있는 인공적인 네트워크 발생 모델을 제안 하였다. 본 연구에서 제안한 발생 모델은 온라인 소셜 네트워크의 특징인 Small-World 성질과 Scale-Free 성질을 단순하게 표현하는 것에서 벗어나 모델의 두 파라메터를 적절히 조절함으로서 사용자가 원하는 다양한 위상 특성치 값들을 나타내 줄 수 있도록 하였다. 이를 위해 Preferential Attachment의 세기를 조정 할 수 있도록 파라메터 K와 군집화 계수를 적절하게 조정 할 수 있도록 파라메터 P를 도입하였다. K가 0에서 10 그리고 P가 0.3에서 0.5 사이의 조합이나 K = 0과 P = 0.9를 이용하면 소셜 네트워크의 위상적 성질을 보유하는 인공적인 네트워크를 생성할 수 있다. 이 조합 하에서는 Small-World 성질과 Scale-Free 성질이 잘 나타난다. 노드차수 분포는 Power-Law를 따른다. 또한 군집화 계수 0.130 ~ 0.238, 평균 최단거리 5.641 ~ 5.985로 나타났다. 또한 네트워크의 크기를 노드 5,000개에서 10,000개로 증가시켜도 소셜 네트워크 성질을 그대로 유지하는 것으로 나타났다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202005653790280 http://jkiice.org |
ISSN: | 2234-4772 2288-4165 |
DOI: | 10.6109/jkiice.2020.24.7.914 |