관세 정형 빅데이터를 활용한 우범공급망 거래패턴 선별

In this study, we try to minimize the tariff risk by constructing a hazardous cargo screening model by applying Association Rule Mining, one of the data mining techniques. For this, the risk level between supply chains is calculated using the Apriori Algorithm, which is an association analysis algor...

Full description

Saved in:
Bibliographic Details
Published in한국콘텐츠학회 논문지, 21(2) Vol. 21; no. 2; pp. 121 - 129
Main Authors 김성찬(Seongchan Kim), 송사광(Sa-Kwang Song), 조민희(Minhee Cho), 신수현(Su-Hyun Shin)
Format Journal Article
LanguageKorean
Published 한국콘텐츠학회 2021
Subjects
Online AccessGet full text
ISSN1598-4877
2508-6723
DOI10.5392/JKCA.2021.21.02.121

Cover

More Information
Summary:In this study, we try to minimize the tariff risk by constructing a hazardous cargo screening model by applying Association Rule Mining, one of the data mining techniques. For this, the risk level between supply chains is calculated using the Apriori Algorithm, which is an association analysis algorithm, using the big data of the import declaration form of the Korea Customs Service(KCS). We perform data preprocessing and association rule mining to generate a model to be used in screening the supply chain. In the preprocessing process, we extract the attributes required for rule generation from the import declaration data after the error removing process. Then, we generate the rules by using the extracted attributes as inputs to the Apriori algorithm. The generated association rule model is loaded in the KCS screening system. When the import declaration which should be checked is received, the screening system refers to the model and returns the confidence value based on the supply chain information on the import declaration data. The result will be used to determine whether to check the import case. The 5-fold cross-validation of 16.6% precision and 33.8% recall showed that import declaration data for 2 years and 6 months were divided into learning data and test data. This is a result that is about 3.4 times higher in precision and 1.5 times higher in recall than frequency-based methods. This confirms that the proposed method is an effective way to reduce tariff risks. 본 연구에서는 데이터마이닝(Data Mining) 기법 중 하나인 연관관계분석(Association Rule Mining)을 적용하여 위험화물 선별모델을 구축함으로써 관세위험을 최소화하고자 한다. 이를 위해 관세청 수입신고서 빅데이터를 활용하여 연관관계분석 알고리즘인 어프라이어리 알고리즘(Apriori Algorithm)을 적용하고 공급망 간의 위험정도를 계산한다. 대규모의 수입신고 데이터로부터 해외공급자와 수입업체 간의 세율관련(과세가격, 품목, 중수량 등), 원산지표시 위반 등에 관련한 적발결과 관한 규칙셋(Rule Set)과 이 규칙들의 신뢰도(Confidence)을 확보하여 우범공급망 간의 거래패턴을 예측할 수 있는 선별모델을 구축한다. 총 2년 6개월 치의 수입신고 데이터를 활용하여 5-겹 교차검증(5-fold cross validation)을 수행한 결과 16.6%의 Precision과 33.8%의 Recall을 보였다. 이는 빈도기반 방법보다 Precision 기준 약 3.4배 Recall 기준 약 1.5배 높은 결과이다. 이로써 논문에서 제안하고 있는 방법이 관세위험을 줄일 수 있는 효과적인 방법임을 확인하였다.
Bibliography:KISTI1.1003/JNL.JAKO202108954446709
ISSN:1598-4877
2508-6723
DOI:10.5392/JKCA.2021.21.02.121