CNN과 Grad-CAM 기반의 실시간 화재 감지

Rapidly detecting and warning of fires is necessary for minimizing human injury and property damage. Generally, when fires occur, both the smoke and the flames are generated, so fire detection systems need to detect both the smoke and the flames. However, most fire detection systems only detect flam...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 22; no. 12; pp. 1596 - 1603
Main Authors 김영진(Young-Jin Kim), 김은경(Eun-Gyung Kim)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2018
Subjects
Online AccessGet full text
ISSN2234-4772
2288-4165
DOI10.6109/jkiice.2018.22.12.1596

Cover

More Information
Summary:Rapidly detecting and warning of fires is necessary for minimizing human injury and property damage. Generally, when fires occur, both the smoke and the flames are generated, so fire detection systems need to detect both the smoke and the flames. However, most fire detection systems only detect flames or smoke and have the disadvantage of slower processing speed due to additional preprocessing task. In this paper, we implemented a fire detection system which predicts the flames and the smoke at the same time by constructing a CNN model that supports multi-labeled classification. Also, the system can monitor the fire status in real time by using Grad-CAM which visualizes the position of classes based on the characteristics of CNN. Also, we tested our proposed system with 13 fire videos and got an average accuracy of 98.73% and 95.77% respectively for the flames and the smoke. 화재에 대한 신속한 예측과 경고는 인명 및 재산피해를 최소화시킬 수 있는 필수적인 요소이다. 일반적으로 화재가 발생하면 연기와 화염이 함께 발생하기 때문에 화재 감지 시스템은 연기와 화염을 모두 감지할 필요가 있다. 그러나 대부분의 화재 감지 시스템은 화염 혹은 연기만 감지하며, 화재 감지를 위한 전처리 작업을 추가함에 따라 처리 속도가 느려지는 단점이 있다. 본 연구에서는 다중 레이블 분류(Multi-labeled Classification)를 지원하는 CNN 모델을 구성해서 화염과 연기를 동시에 예측하고, CNN의 특징을 기반으로 클래스에 대한 위치를 시각화하는 Grad-CAM을 이용해서 실시간으로 화재 상태를 모니터링 할 수 있는 화재 감지 시스템을 구현하였다. 또한, 13개의 화재 동영상을 사용해서 테스트한 결과, 화염과 연기에 대해 각각 98.73%와 95.77%의 정확도를 보였다.
Bibliography:KISTI1.1003/JNL.JAKO201809242559700
http://jkiice.org
ISSN:2234-4772
2288-4165
DOI:10.6109/jkiice.2018.22.12.1596