사막형 결정질 실리콘 태양전지의 에미터 구조에 따른 온도 별 특성 변화 분석

Different power output of solar cells can be observed at high-temperature regions such as desert areas. In this study, performance dependence on operating temperature of crystalline silicon solar cells with different emitter types was analyzed. Based on the light current-voltage (LIV) measurement, t...

Full description

Saved in:
Bibliographic Details
Published inCurrent Photovoltaic Research Vol. 2; no. 3; pp. 135 - 139
Main Authors 남윤정(Yoon Chung Nam), 김수민(Soo Min Kim), 강윤묵(Yoonmook Kang), 이해석(Hae-Seok Lee), 김동환(Donghwan Kim)
Format Journal Article
LanguageKorean
Published 한국태양광발전학회 2014
Subjects
Online AccessGet full text
ISSN2288-3274
2508-125X

Cover

More Information
Summary:Different power output of solar cells can be observed at high-temperature regions such as desert areas. In this study, performance dependence on operating temperature of crystalline silicon solar cells with different emitter types was analyzed. Based on the light current-voltage (LIV) measurement, temperature coefficients of short-circuit current density ($J_{SC}$), open-circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency were measured and compared for two groups of crystalline silicon solar cells with different emitter types. One group had homogeneously doped (conventional) emitter and another selectively doped (selective) emitter. Varying the operating temperature from 25 to 40, 60, and $80^{\circ}C$, LIV characteristics of the cells were measured and the properties of saturation current densities ($J_0$) were extracted from dark current-voltage (DIV) curve. From the DIV data, effect of temperature on the performance of the solar cells with different electrical structures for the emitter was analyzed. Increasing the temperature, both emitter structures showed a slight increase in $J_{SC}$ and a rapid degradation of $V_{OC}$. FF and power conversion efficiency also decreased with the increasing temperature. The degrees of $J_{SC}$ increase and $V_{OC}$ degradation for two groups were compared and explained. Also, FF change was explained by series and shunt resistances from the LIV data. It was concluded that the degradation of solar cells shows different values at different temperatures depending on the emitter type of solar cells.
Bibliography:KISTI1.1003/JNL.JAKO201411639883289
ISSN:2288-3274
2508-125X