텍스트 마이닝을 통한 우리나라의 벼 도열병 발생 개황 분석
Rice blast is a major plant disease that occurs worldwide and significantly reduces rice yields. Rice blast disease occurs periodically in Korea, causing significant socio-economic damage due to the unique status of rice as a major staple crop. A disease outbreak prediction system is required for pr...
Saved in:
Published in | Sigmulbyeong yeon'gu Vol. 28; no. 3; pp. 113 - 121 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Korean |
Published |
한국식물병리학회
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1598-2262 2233-9191 |
Cover
Summary: | Rice blast is a major plant disease that occurs worldwide and significantly reduces rice yields. Rice blast disease occurs periodically in Korea, causing significant socio-economic damage due to the unique status of rice as a major staple crop. A disease outbreak prediction system is required for preventing rice blast disease. Epidemiological investigations of disease outbreaks can aid in decision-making for plant disease management. Currently, plant disease prediction and epidemiological investigations are mainly based on quantitatively measurable, structured data such as crop growth and damage, weather, and other environmental factors. On the other hand, text data related to the occurrence of plant diseases are accumulated along with the structured data. However, epidemiological investigations using these unstructured data have not been conducted. The useful information extracted using unstructured data can be used for more effective plant disease management. This study analyzed news articles related to the rice blast disease through text mining to investigate the years and provinces where rice blast disease occurred most in Korea. Moreover, the average temperature, total precipitation, sunshine hours, and supplied rice varieties in the regions were also analyzed. Through these data, it was estimated that the primary causes of the nationwide outbreak in 2020 and the major outbreak in Jeonbuk region in 2021 were meteorological factors. These results obtained through text mining can be combined with deep learning technology to be used as a tool to investigate the epidemiology of rice blast disease in the future. 벼 도열병은 전 세계적으로 발병하여 쌀 수확량을 크게 감소시키는 주요 식물병이다. 벼 도열병은 한국에서도 주기적으로 대발생하여 사회경제적으로 큰 피해를 입힌다. 이를 예방하기 위해서는 병 발생 예찰 시스템이 필요하다. 또한 병 발생에 대한 역학 조사는 식물병 관리를 위한 의사결정을 내릴 때 도움을 줄 수 있다. 현재 도열병 예찰 및 역학 조사는 주로 작물의 생육량, 기상 환경 요인 등 정량적으로 측정 가능한 정형 데이터를 기반으로 수행되고 있다. 정형 데이터와 함께 도열병 발생과 관련한 텍스트 자료들도 많이 축적되고 있다. 그러나 이러한 비정형 데이터를 이용한 역학 조사는 이루어지지 않고 있다. 비정형 데이터를 활용하여 유용한 정보를 추출한다면 도열병을 포함한 앞으로의 식물병 관리에 사용할 수 있을 것이다. 이 연구는 텍스트 마이닝을 통해 도열병 관련 뉴스 기사를 분석하여 우리나라에서 벼 도열병이 다발생한 연도와 지역을 조사하였고, 해당 지역의 평균 기온, 합계 강수량, 일조시간, 공급된 벼 품종을 분석하였다. 이를 통해 2020년 평년에 비해 낮은 기온과 일조시간 및 높은 강수량이 전국적인 도열병 다발생의 원인에 기여했고, 2021년 전라북도와 경상북도 일부 지역의 다발생은 비슷한 기상학적 요인에 의한 것으로 추측할 수 있었다. 더하여 같은 벼 품종의 연작에 의한 도열병 다발생 가능성과 질소 비료의 시비량이 병 발생에 미치는 영향에 대한 추후 연구가 필요하다. 결론적으로, 쏟아지는 정보의 홍수속에서 관련 기사를 종합적으로 보기 어렵다. 따라서, 텍스트 마이닝을 통해 얻은 결과로 특정 키워드들이 많이 관찰될 때 적극적 방제에 대한 의사결정을 할 수 있는 시스템이 구축될 필요가 있다. 이는 추후 딥러닝 기술과 접목되어 벼 도열병 역학 조사 도구로 사용될 수도 있을 것이다. 텍스트 마이닝을 통해 얻은 유의미한 정보를 기존의 정형 데이터 기반의 모델과 결합한다면 농업현장에서 병발생 예측 또는 방제기술 개선에 필요한 고품질 정보를 제공해줄 수 있을 것이라고 예상한다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202229156062165 |
ISSN: | 1598-2262 2233-9191 |