주조직적합항원이 불일치하는 마우스 동종 조혈모세포이식에서 IL-2로 유도된 CD4+CD25+ T세포를 이용한 이식편대숙주병의 억제

Background: In kidney transplantation, donor specific transfusion may induce tolerance as a result of some immune regulatory cells against the graft. In organ transplantation, the immune state arises from a relationship between the immunocompromised graft and the immunocompetent host. However, a rev...

Full description

Saved in:
Bibliographic Details
Published inImmune network Vol. 3; no. 4; pp. 287 - 294
Main Authors 현재호(Jae Ho Hyun), 정대철(Dae Chul Jeong), 정낙균(Nak Gyun Chung), 박수정(Soo Jeong Park), 민우성(Woo Sung Min), 김태규(Tai Gyu Kim), 최병옥(Byung Ock Choi), 김원일(Won Il Kim), 한치화(Chi Wha Han), 김학기(Hack Ki Kim)
Format Journal Article
LanguageKorean
Published 대한면역학회 2003
Subjects
Online AccessGet full text
ISSN1598-2629
2092-6685

Cover

More Information
Summary:Background: In kidney transplantation, donor specific transfusion may induce tolerance as a result of some immune regulatory cells against the graft. In organ transplantation, the immune state arises from a relationship between the immunocompromised graft and the immunocompetent host. However, a reverse immunological situation exists between the graft and the host in hematopoietic stem cell transplantation (HSCT). In addition, early IL-2 injections after an allogeneic murine HSCT have been shown to prevent lethal graft versus host disease (GVHD) due to CD4+ cells. We investigated the induction of the regulatory CD4+CD25+ cells after a transfusion of irradiated recipient cells with IL-2 into a donor. Methods: The splenocytes (SP) were obtained from 6 week-old BALB/c mice ($H-2^d$) and irradiated as a single cell suspension. The donor mice (C3H/He, $H-2^k$) received $5{\times}10^6$ irradiated SP, and 5,000 IU IL-2 injected intraperitoneally on the day prior to HSCT. The CD4+CD25+ cell populations in SP treated C3H/He were analyzed. In order to determine the in vivo effect of CD4+CD25+ cells, the lethally irradiated BALB/c were transplanted with $1{\times}10^7$ donor BM and $5{\times}10^6$ CD4+CD25+ cells. The other recipient mice received either $1{\times}10^7$ donor BM with $5{\times}10^6$ CD4+ CD25- cells or the untreated SP. The survival and GVHD was assessed daily by a clinical scoring system. Results: In the MLR assay, BALB/c SP was used as a stimulator with C3H/He SP, as a responder, with or without treatment. The inhibition of proliferation was $30.0{\pm}13%$ compared to the control. In addition, the MLR with either the CD4+CD25+ or CD4+CD25- cells, which were isolated by MidiMacs, from the C3H/He SP treated with the recipient SP and IL-2 was evaluated. The donor SP treated with the recipient cells and IL-2 contained more CD4+CD25+ cells ($5.4{\pm}1.5%$) than the untreated mice SP ($1.4{\pm}0.3%$)(P<0.01). There was a profound inhibition in the CD4+CD25+ cells ($61.1{\pm}6.1%$), but a marked proliferation in the CD4+CD25- cells ($129.8{\pm}65.2%$). Mice in the CD4+CD25+ group showed low GVHD scores and a slow progression from the post-HSCT day 4 to day 9, but those in the control and CD4+CD25- groups had a high score and rapid progression (P<0.001). The probability of survival was 83.3% in the CD4+CD25+ group until post-HSC day 35 and all mice in the control and CD4+CD25- groups died on post-HSCT day 8 or 9 (P=0.0105). Conclusion: Donor graft engineering with irradiated recipient SP and IL-2 (recipient specific transfusion) can induce abundant regulatory CD4+CD25+ cells to prevent GVHD.
Bibliography:KISTI1.1003/JNL.JAKO200327362963558
ISSN:1598-2629
2092-6685