K-평균 군집화 알고리즘 및 최근접점 기반 무인항공기용 공선상의 다중 정적 장애물 충돌 회피
무인항공기의 충돌 회피 기술은 장애물에 대한 탐지 기술과 충돌 여부 판단 및 회피 기술이 요구된다. 본 논문은 공선상에 존재하는 다중 정적 장애물에 대한 무인항공기의 충돌 회피를 수행하기 위하여, LiDAR를 활용한 장애물 탐지 알고리즘과 최근접점 기반의 충돌 인식 및 회피 알고리즘을 제안한다. 장애물 탐지를 수행하기 위하여 LiDAR의 측정 데이터 중 지면을 제거하는 전처리를 수행하고, K-평균 군집화 알고리즘을 활용하여 전처리된 데이터에서 장애물을 탐지 및 분류한다. 또한, 상대 항법을 통해 탐지한 다중 장애물의 절대 위치를 추...
Saved in:
| Published in | 한국항행학회논문지 Vol. 26; no. 6; pp. 427 - 433 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | Korean |
| Published |
한국항행학회
31.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1226-9026 2288-842X |
Cover
| Summary: | 무인항공기의 충돌 회피 기술은 장애물에 대한 탐지 기술과 충돌 여부 판단 및 회피 기술이 요구된다. 본 논문은 공선상에 존재하는 다중 정적 장애물에 대한 무인항공기의 충돌 회피를 수행하기 위하여, LiDAR를 활용한 장애물 탐지 알고리즘과 최근접점 기반의 충돌 인식 및 회피 알고리즘을 제안한다. 장애물 탐지를 수행하기 위하여 LiDAR의 측정 데이터 중 지면을 제거하는 전처리를 수행하고, K-평균 군집화 알고리즘을 활용하여 전처리된 데이터에서 장애물을 탐지 및 분류한다. 또한, 상대 항법을 통해 탐지한 다중 장애물의 절대 위치를 추정하며, 저주파 통과 필터를 활용하여 추정 위치를 보정한다. 탐지한 다중 정적 장애물과의 충돌 회피를 수행하기 위해 최근접점 기반의 충돌 인식 및 회피 알고리즘을 활용한다. 각 장애물 간의 거리를 활용하여 회피해야 하는 장애물 정보를 갱신하고, 갱신된 장애물 정보를 통해 충돌 인식 및 회피를 수행한다. 마지막으로 Gazebo 시뮬레이션 환경에서의 장애물 위치 추정, 충돌 인식 및 회피 결과 분석을 통해, 충돌 회피가 정상적으로 수행되는 것을 검증하였다.
Obstacle detection, collision recognition, and avoidance technologies are required the collision avoidance technology for UAVs. In this paper, considering collinear multiple static obstacle, we propose an obstacle detection algorithm using LiDAR and a collision recognition and avoidance algorithm based on CPA. Preprocessing is performed to remove the ground from the LiDAR measurement data before obstacle detection. And we detect and classify obstacles in the preprocessed data using the K-means clustering algorithm. Also, we estimate the absolute positions of detected obstacles using relative navigation and correct the estimated positions using a low-pass filter. For collision avoidance with the detected multiple static obstacle, we use a collision recognition and avoidance algorithm based on CPA. Information of obstacles to be avoided is updated using distance between each obstacle, and collision recognition and avoidance are performed through the updated obstacles information. Finally, through obstacle location estimation, collision recognition, and collision avoidance result analysis in the Gazebo simulation environment, we verified that collision avoidance is performed successfully. |
|---|---|
| Bibliography: | THE KOREA NAVIGATION INSTITUTE KISTI1.1003/JNL.JAKO202235643238021 |
| ISSN: | 1226-9026 2288-842X |