Generalized Hypergraph Matching via Iterated Packing and Local Ratio

In k $$k$$ -hypergraph matching, we are given a collection of sets of size at most k $$k$$ , each with an associated weight, and we seek a maximum-weight subcollection whose sets are pairwise disjoint. More generally, in k $$k$$ -hypergraph b $$b$$ -matching, instead of disjointness we require that...

Full description

Saved in:
Bibliographic Details
Published inApproximation and Online Algorithms Vol. 8952; pp. 207 - 223
Main Authors Parekh, Ojas, Pritchard, David
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2015
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319182629
3319182625
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-18263-6_18

Cover

More Information
Summary:In k $$k$$ -hypergraph matching, we are given a collection of sets of size at most k $$k$$ , each with an associated weight, and we seek a maximum-weight subcollection whose sets are pairwise disjoint. More generally, in k $$k$$ -hypergraph b $$b$$ -matching, instead of disjointness we require that every element appears in at most b $$b$$ sets of the subcollection. Our main result is a linear-programming based (k-1+1k) $$(k-1+\tfrac{1}{k})$$ -approximation algorithm for k $$k$$ -hypergraph b $$b$$ -matching. This settles the integrality gap when k $$k$$ is one more than a prime power, since it matches a previously-known lower bound. When the hypergraph is bipartite, we are able to improve the approximation ratio to k-1 $$k-1$$ , which is also best possible relative to the natural LP. These results are obtained using a more careful application of the iterated packing method. Using the bipartite algorithmic integrality gap upper bound, we show that for the family of combinatorial auctions in which anyone can win at most t $$t$$ items, there is a truthful-in-expectation polynomial-time auction that t $$t$$ -approximately maximizes social welfare. We also show that our results directly imply new approximations for a generalization of the recently introduced bounded-color matching problem.We also consider the generalization of b $$b$$ -matching to demand matching, where edges have nonuniform demand values. The best known approximation algorithm for this problem has ratio 2k $$2k$$ on k $$k$$ -hypergraphs. We give a new algorithm, based on local ratio, that obtains the same approximation ratio in a much simpler way.
Bibliography:Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Original Abstract: In k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-hypergraph matching, we are given a collection of sets of size at most k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}, each with an associated weight, and we seek a maximum-weight subcollection whose sets are pairwise disjoint. More generally, in k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-hypergraph b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-matching, instead of disjointness we require that every element appears in at most b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document} sets of the subcollection. Our main result is a linear-programming based (k-1+1k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1+\tfrac{1}{k})$$\end{document}-approximation algorithm for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-hypergraph b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-matching. This settles the integrality gap when k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} is one more than a prime power, since it matches a previously-known lower bound. When the hypergraph is bipartite, we are able to improve the approximation ratio to k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document}, which is also best possible relative to the natural LP. These results are obtained using a more careful application of the iterated packing method. Using the bipartite algorithmic integrality gap upper bound, we show that for the family of combinatorial auctions in which anyone can win at most t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} items, there is a truthful-in-expectation polynomial-time auction that t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-approximately maximizes social welfare. We also show that our results directly imply new approximations for a generalization of the recently introduced bounded-color matching problem.We also consider the generalization of b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-matching to demand matching, where edges have nonuniform demand values. The best known approximation algorithm for this problem has ratio 2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k$$\end{document} on k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-hypergraphs. We give a new algorithm, based on local ratio, that obtains the same approximation ratio in a much simpler way.
ISBN:9783319182629
3319182625
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-18263-6_18